
Chapter 8 

Applications 

8.1 Matrices in Engineering 

This section will show how engineering problems produce symmetric matrices K (often 
K is positive definite). The "linear algebra reason" for symmetry and positive definiteness 
is their form K = AT A and K = ATCA. The "physical reason" is that the expression 
iuT Ku represents energy-and energy is never negative. The matrix C, often diagonal, 
contains positive physical constants like conductance or stiffness or diffusivity. 

Our first examples come from mechanical and civil and aeronautical engineering. 
K is the stiffness matrix, and K-1 f is the structure's response to forces f from outside. 
Section 8.2 turns to electrical engineering-the matrices come from networks and circuits. 
The exercises involve chemical engineering and I could go on! Economics and manage
ment and engineering design come later in this chapter (there the key is optimization). 

Engineering leads to linear algebra in two ways, directly and indirectly: 

Direct way The physical problem has only a finite number of pieces. The laws 
connecting their position or velocity are linear (movement is not too big or too fast). 
The laws are expressed by matrix equations. 

Indirect way The physical system is "continuous". Instead of individual masses, the 
mass density and the forces and the velocities are functions of x or x, y or x, y, z. 
The laws are expressed by differential equations. To find accurate solutions we 
approximate by finite difference equations or finite element equations. 

Both ways produce matrix equations and linear algebra. I really believe that you cannot 
do modem engineering without matrices. 

Here we present equilibrium equations K u = f. With motion, M d 2 U / d t 2 + K u = f 
becomes dynamic. Then we use eigenvalues from K x = AM x, or finite differences. 
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410 Chapter 8. Applications 

Before explaining the physical examples, may I write down the matrices? The tridi
agonal Ko appears many times in this textbook. Now we will see its applications. These 
matrices are all symmetric, and the first four are positive definite: 

Ko = AXAo = [ - i -1 -i] [Cd C2 -C2 
2 A6CoAo = -C2 C2 + C3 -C3 ] 

-1 -C3 C3 + C4 

Fixed-fixed Spring constants included 

Kl = AlAl = [ -i -1 

-~] [Cd C2 -C2 
2 AlC1A 1 = -C2 C2 + C3 -C3] 

-1 -C3 C3 

Fixed-free Spring constants included 

K singular = [ - ~ -1 

-~] [ -i 
-1 -1] 2 K circular = 2 -1 

-1 -1 -1 2 

Free-free 

The matrices Ko, K I, Ksingular, and Kcircular have C = I for simplicity. This means 
that all the "spring constants" are Ci = 1. We included A6CoAo and AlCIA l to show how 
the spring constants enter the matrix (without changing its positive definiteness). Our first 
goal is to show where these stiffness matrices come from. 

A Line of Springs 

Figure 8.1 shows three masses mI, m2, m3 connected by a line of springs. One case has 
four springs, with top and bottom fixed. The fixed-free case has only three springs; the 
lowest mass hangs freely. The fixed-fixed problem will lead to Ko and A6CoAo. The 
fixed-free problem will lead to K 1 and A I CIA 1. A free-free problem, with no support at 
either end, produces the matrix Ksingular. 

We want equations for the mass movements u and the tensions (or compressions) y: 

u 

Y 

(u 1 , U2, U 3) = movements of the masses (down or up) 
(YI,Y2,Y3,Y4) or (YI,Y2,Y3) = tensions in the springs 

When a mass moves downward, its displacement is positive (Ui > 0). For the springs, 
tension is positive and compression is negative (Yi < 0). In tension, the spring is stretched 
so it pulls the masses inward. Each spring is controlled by its own Hooke's Law Y = C e: 
(stretching force) = (spring constant) times (stretching distance). 

Our job is to link these one-spring equations Y = ce into a vector equation K u = f 
for the whole system. The force vector f comes from gravity. The gravitational constant 
g will multiply each mass to produce forces f = (mIg, m2g, m3g). 
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fixed end Uo = 0 fixed end Uo = 0 
spring Cl tension Yl spring Cl tension Yl 
mass ml movementul mass ml movement Ul 

C2 Y2 spring C2 tension Y2 

m2 U2 mass m2 movement U2 

C3 Y3 spring C3 tension Y3 

m3 U3 mass m3 movement U3 

C4 Y4 free end Y4 = 0 
fixed end U4= 0 

Figure 8.1: Lines of springs and masses: fixed-fixed and fixed-free ends. 

The real problem is to find the stiffness matrix (fixed-fixed and fixed-free). The best 
way to create K is in three steps, not one. Instead of connecting the movements Ui directly 
to the forces, it is much better to connect each vector to the next in this list: 

U 

e 
y 

f 

Movements of n masses 
Elongations ofm springs 
Internal forces in m springs 
External forces on n masses 

(Ul, ... , un) 
(et, ... , em) 

(Yl,"" Ym) 
(11"", In) 

The framework that connects U to e to y to f looks like this: 

~ [ZJ e = Au A IS m by n 

At tAT y = Ce C IS m by m 

0 
C 

0 ----+ f = ATy AT is n by m 

We will write down the matrices A and C and AT for the two examples, first with fixed 
ends and then with the lower end free. Forgive the simplicity of these matrices, it is their 
form that is so important. Especially the appearance of A together with AT. 

The elongation e is the stretching distance-how far the springs are extended. Orig
inally there is no stretching-the system is lying on a table. When it becomes vertical 
and upright, gravity acts. The masses move down by distances Ul, U2, U3. Each spring is 
stretched or compressed by ei = Ui - Ui -1, the difference in displacements of its ends: 

Stretching of 
each spring 

First spring: 
Second spring: 
Third spring: 
Fourth spring: 

el = Ul 
e2 = U2 - Ul 
e3 = U3 - U2 

e4 = - U3 

(the top is fixed so Uo = 0) 

(the bottom is fixed so U4 = 0) 
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If both ends move the same distance, that spring is not stretched: Ui = Ui-l and ei = O. 
The matrix in those four equations is a 4 by 3 difference matrix A, and e = Au: 

Stretching 
distances e = Au is 

(elongations) 

100 
-1 1 0 
o -1 1 
o 0-1 

(1) 

The next equation Y = C e connects spring elongation e with spring tension y. This is 
Hooke's Law Yi = Ciei for each separate spring. It is the "constitutive law" that depends 
on the material in the spring. A soft spring has small c, so a moderate force Y can produce 
a large stretching e. Hooke's linear law is nearly exact for real springs, before they are 
overstretched and the material becomes plastic. 

Since each spring has its own law, the matrix in y = C e is a diagonal matrix C: 

Hooke's 
Law 

y = Ce 

Clel 
C2e 2 

C3 e 3 

C4e 4 

IS 

Yl 
Y2 
Y3 
Y4 

Combining e = Au with y = C e, the spring forces are y = CAu. 

(2) 

Finally comes the balance equation, the most fundamental law of applied mathematics. 
The internal forces from the springs balance the external forces on the masses. Each mass 
is pulled or pushed by the spring force Y j above it. From below it feels the spring force 
Yj+l plus h from gravity. Thus Yj = Yj+l + h or h = Yj - Yj+l: 

Force 
balance 

f = ATy 

- Yl - Y2 
Y2 - Y3 
Y3 - Y4 

o 
-1 

1 J] 
Yl 
Y2 
Y3 
Y4 

(3) 

That matrix is AT. The equation for balance of forces is f = AT y. Nature transposes the 
rows and columns of the e - u matrix to produce the f - Y matrix. This is the beauty of 
the framework, that AT appears along with A. The three equations combine into Ku = f, 
where the stiffness matrix is K = ATCA: 

{ ; ~~} combine into ATCAu = f or Ku = f. 

In the language of elasticity, e = Au is the kinematic equation (for displacement). The 
force balance f = AT Y is the static equation (for equilibrium). The constitutive law is 
y = Ce (from the material). Then ATCA is n by n = (n by m)(m by m)(m by n). 

Finite element programs spend major effort on assembling K = AT CA from thousands 
of smaller pieces. We find K for four springs (fixed-fixed) by multiplying AT times CA: 

Cl 0 0 
-C2 C2 0 

0 -C3 C3 

0 0 -C4 
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If all springs are identical, with Cl = C2 = C3 = C4 = 1, then C = I. The stiffness matrix 
reduces to AT A. It becomes the special -1, 2, -1 matrix: 

With C = I 
[ 

2 -1 0 ] 
K 0 = A~Ao = -1 2 -1 . 

o -1 2 
(4) 

Note the difference between AT A from engineering and LLT from linear algebra. The 
matrix A from four springs is 4 by 3. The triangular matrix L from elimination is square. 
The stiffness matrix K is assembled from AT A, and then broken up into L LT. One step 
is applied mathematics, the other is computational mathematics. Each K is built from 
rectangular matrices and factored into square matrices. 

May I list some properties of K = AT C A? You know almost all of them: 

1. K is tridiagonal, because mass 3 is not connected to mass 1. 

2. K is symmetric, because C is symmetric and AT comes with A. 

3. K is positive definite, because Ci > 0 and A has independent columns. 

4. K- 1 is a full matrix in equation (5) with all positive entries. 

That last property leads to an important fact about u = K- 1 f: If all forces act downwards 
(h > 0) then all movements are downwards (u j > 0). Notice that "positiveness" is 
different from "positive definiteness". Here K-I is positive (K is not). Both K and K-l 
are positive definite. 

Example 1 Suppose all Ci = C and m j = m. Find the movements u and tensions y. 
All springs are the same and all masses are the same. But all movements and elonga

tions and tensions will not be the same. K- 1 includes ~ because ATCA includes c: 

u = K- 1 f = _1 [~ ~ ;] [ :; ] = mg [ 3 ~2 ] (5) 
4c 1 2 3 mg C 3/2 

The displacement U2, for the mass in the middle, is greater than UI and U3. The units are 
correct: the force mg divided by force per unit length C gives a length u. Then 

e = Au = 

100 
-1 I 0 
o -1 1 
o 0-1 

mg 

C 

3/2 
1/2 

-1/2 
-3/2 

Those elongations add to zero because the ends of the line are fixed. (The sum U 1 + (u 2 -

U 1) + (U3 - U2) + (-U3) is certainly zero.) For each spring force Yi we just multiply ei by 
3 1 1 3 . 

C. SO YI, Y2, Y3, Y4 are 2'.mg, 2'.mg, -2'.mg, -2'.mg. The upper two spnngs are stretched, 
the lower two springs are compressed. 

Notice how u, e, yare computed in that order. We assembled K = ATCA from rect
angular matrices. To find u = K- 1 f, we work with the whole matrix and not its three 
pieces! The rectangular matrices A and AT do not have (two-sided) inverses. 
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Warning: Normally you cannot write K- 1 = A-1C-1 (AT)-l . 

The three matrices are mixed together by ATCA, and they cannot easily be untangled. 
In general, AT y = f has many solutions. And four equations Au = e would usually 
have no solution with three unknowns. But AT CA gives the correct solution to all three 
equations in the framework. Only when m = n and the matrices are square can we go from 
y = (AT)-l f to e = C-1 y to U = A-Ie. We will see that now. 

Remove the fourth spring. All matrices become 3 by 3. The pattern does not change! The 
matrix A loses its fourth row and (of course) AT loses its fourth column. The new stiffness 
matrix Kl becomes a product of square matrices: 

C2 ] [-~ i ~] . 
C3 0 -1 I 

The missing column of AT and row of A multiplied the missing C4. SO the quickest way to 
find the new ATCA is to set C4 = 0 in the old one: 

FIXED 
FREE (6) 

If Cl = C2 = C3 = 1 and C = I, this is the -1, 2, -1 tridiagonal matrix, except the last 
entry is 1 instead of 2. The spring at the bottom is free. 

~ 2 All Ci = C and all m j = m in the fixed-free hanging line of springs. Then 

[ 

2 -1 0 ] 
Kl = C -1 2-1 

o -1 1 

1 [ 1 and KI1 = - 1 
C I 

11] 2 2 . 
2 3 

The forces mg from gravity are the same. But the movements change from the previous 
example because the stiffiiess matrix has changed: 

Those movements are greater in this fixed-free case. The number 3 appears in u 1 because 
all three masses are pulling the first spring down. The next mass moves by that 3 plus an 
additiona12 from the masses below it. The third mass drops even more (3 + 2 + I = 6). 
The elongations e = Au in the springs display those numbers 3,2, 1: 

e=[ 
1 0 

-I 1 
o -1 
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Multiplying by c, the forces y in the three springs are 3mg and 2mg and mg. And the 
special point of square matrices is that y can be found directly from f! The balance 
equation AT y = f determines y immediately, because m = n and AT is square. We are 
allowed to write (ATCA)-l = A-1C-I(AT)-1: 

y = (AT)-l f is [~ ~ ~] [ :~ ] = [ ;:~ ] . 
o 0 1 mg Img 

Two Free Ends: K is Singular 

The first line of springs in Figure 8.2 is free at both ends. This means trouble (the whole 
line can move). The matrix A is 2 by 3, short and wide. Here is e = Au: 

FREE-FREE (7) 

Now there is a nonzero solution to Au = O. The masses can move with no stretching of 
the springs. The whole line can shift by u = (1, I, 1) and this leaves e = (0,0). A has 
dependent columns and the vector (1, 1, 1) is in its nullspace: 

Au = [ - ~ _ i ~] [ : ] = [ ~ ] = no stretching. (8) 

Au = 0 certainly leads to ATCAu = O. So ATCA is only positive semidefinite, without Cl 

and C4. The pivots will be C2 and C3 and no third pivot. The rank is only 2: 

[ -i -n [C2 C,][ -~ -: n = [ -~~ C2 ~:c, -~:J (9) 

Two eigenvalues will be positive but x = (1, 1, I) is an eigenvector for.A = O. We can 
solve ATCAu = f only for special vectors f. The forces have to add to /1 + h + /3 = 0, 
or the whole line of springs (with both ends free) will take off like a rocket. 

Circle of Springs 

A third spring will complete the circle from mass 3 back to mass 1. This doesn't make K 
invertible-the new matrix is still singular. That stiffness matrix Kci rcular is not tridiag
onal, but it is symmetric (always) and semidefinite: 

A~ircularAcircular = [ ~ -~ -~] [-~ ~ -~] = [-~ -~ =~]. (10) 
-1 0 1 0 -1 1 -1 -1 2 

The only pivots are 2 and ~. The eigenvalues are 3 and 3 and O. The determinant is zero. 
The nullspace still contains x - (1,1, 1), when all the masses move together. 
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mass ml movement Ul mass ml movementul 

spring C2 tension Y2 spring C2 spring Cl 

mass m2 movement U2 mass m2 movement U2 

spring C3 tension Y3 spring C3 

mass m3 movement U3 mass m3 movement U3 

Figure 8.2: Free-free ends: A line of springs and a "circle" of springs: Singular K's. 
The masses can move without stretching the springs so Au = 0 has nonzero solutions. 

This movement vector (1, 1, 1) is in the nullspace of Acircular and Kcircular, even after 
the diagonal matrix C of spring constants is included: the springs are not stretched. 

(11) 

Continuous Instead of Discrete 

Matrix equations are discrete. Differential equations are continuous. We will see the dif
ferential equation that corresponds to the tridiagonal -1, 2, -1 matrix AT A. And it is a 
pleasure to see the boundary conditions that go with Ko and K 1. 

The matrices A and A T correspond to the derivatives d / dx and -d / dx! Remember 
that e = Au took differences u i - U i-I, and f = AT Y took differences Y i - Yi + 1. Now 
the springs are infinitesimally short, and those differences become derivatives: 

is like 
du 

dx 
Yi - Yi+l 

b.x 
is like 

dy 

dx 

The factor b.x didn 't app~ar earlier-we imagined the distance between masses was 1. To 
approximate a continuous solid bar, we take many more masses (smaller and closer). Let 
me jump to the three steps A, C, AT in the continuous model, when there is stretching and 
Hooke's Law and force balance at every point x: 

du 
e(x) = Au =

dx 
y(x) = c(x)e(x) 

dy 
ATy = -- = f(x) 

dx 

Combining those equations into ATCAu(x) = f(x), we have a differential equation not a 
matrix equation. The line of springs becomes an elastic bar: 

-, , -- \\ .;- , -- . . 

<Sijl@~~~~!j)i :fc~~~~<~,<;,~4j;;j~~~;;: -:x (c (x) ~~) = f(x) (12) 



8.1. Matrices in Engineering 417 

AT A corresponds to a second derivative. A is a "difference matrix" and AT A is a "second 
difference matrix". The matrix has -1,2, -1 and the equation has -d2ul dx 2 : 

-Ui+1 + 2Ui - Ui-I is a second difference d
2
u . d d . . 

- --2 IS a secon ertvahve. 
dx 

Now we see why this symmetric matrix is a favorite. When we meet a first derivative 
du I dx, we have three choices (forward, backward, and centered differences): 

du u(x + ~x) - u(x) u(x) - u(x - ~x) u(x + ~x) - u(x - ~x) 
- ::: or or . 
dx ~x ~x 2~x 

When we meet d 2uI dx 2 , the natural choice is u(x + ~x) - 2u(x) + u(x - ~x), divided 
by (~X)2. Why reverse these signs to -1,2, -I? Because the positive definite matrix has 
+2 on the diagonal. First derivatives are antisymmetric; the transpose has a minus sign. 
So second differences are negative definite, and we change to -d2 u I dx 2 . 

We have moved from vectors to functions. Scientific computing moves the other way. 
It starts with a differential equation like (12). Sometimes there is a formula for the solution 
u(x), more often not. In reality we create the discrete matrix K by approximating the 
continuous problem. Watch how the boundary conditions on u come in! By missing Uo we 
treat it (correctly) as zero: 

FIXED 
FIXED 

1 
Au=

~x 

1 
-1 
o 
o 

o 0 
1 0 

-1 1 
o -1 

with Uo = 0 
U4 = 0 

(13) 

Fixing the top end gives the boundary condition Uo = O. What about the free end, when 
the bar hangs in the air? Row 4 of A is gone and so is U4. The boundary condition must 
come from AT. It is the missing Y4 that we are treating (correctly) as zero: 

FIXED 
FREE 

AT Y = - 0 1 -1 Y2 1 [1 -1 0 ] [ YI ] 

~x 0 0 1 Y3 

dy 
~-

dx 
with Uo = 0 (14) 

Y4 = 0 

The boundary condition Y4 0 at the free end becomes dul dx 0, since y = Au 
corresponds to dul dx. The force balance AT y = f at that end (in the air) is 0 = O. The 
last row of Klu = f has entries -1, 1 to reflect this condition duldx = O. 

May I summarize this section? I hope this example will help you turn calculus into 
linear algebra, replacing differential equations by difference equations. If your step ~x is 
small enough, you will have a totally satisfactory solution. 

.. d (dU). [dU ] The equation IS - dx c(x) dx = f(x) wIth u(O) = 0 and u(1) or dx (1) = 0 

Divide the bar into N pieces of length ~x. Replace du I dx by Au and -dy I dx by AT y. 
Now A and AT include II ~x. The end conditions are Uo = 0 and [UN = 0 or YN = 0]. 
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The three steps -d/dx and c(x) and d/dx correspond to AT and C and A: 

1 = ATy and y = Ce and e = Au give ATCAu = I. 

This is a fundamental example in computational science and engineering. Our book con
centrates on Step 3 in that process (linear algebra). Now we have taken Step 2. 

1. Model the problem by a differential equation 

2. Discretize the differential equation to a difference equation 

3. Understand and solve the difference equation (and boundary conditions!) 

4. Interpret the solution; visualize it; redesign if needed. 

Numerical simulation has become a third branch of science, together with experiment and 
deduction. Designing the Boeing 777 was much less expensive on a computer than in a 
wind tunnel. Our discussion still has to move from ordinary to partial differential equations, 
and from linear to nonlinear. 

The texts Introduction to Applied Mathematics and Computational Science and Engi
neering (Wellesley-Cambridge Press) develop this whole subject further-see the course 
page math.mit.edu/18085 with video lectures (also on ocw.mit.edu). The principles re
main the same, and I hope this book helps you to see the framework behind the computa
tions. 

Problem Set 8.1 

1 ShowthatdetAbCoAo = CIC2C3+CIC3C4+CIC2C4+C2C3C4. Find also detAICIA I 
in the fixed-free example. 

2 Invert AIc1A 1 in the fixed-free example by multiplying AIIC!1 (AD-I. 

3 In the free-free case when ATCA in equation (9) is singular, add the three equations 
ATCAu = 1 to show that we need II + 12 + h = 0. Find a solution to ATCAu = 
1 when the forces 1 = (-1,0,1) balance themselves. Find all solutions! 

4 Both end conditio~s for the free-free differential equation are du/ dx = 0: 

d (dU) . - dx c(x) dx = f(x) wIth 
du 
dx = ° at both ends. 

Integrate both sides to show that the force f(x) must balance itself, f f(x) dx = 0, 
or there is no solution. The complete solution is one particular solution u (x) plus 
any constant. The constant corresponds to u = (1, 1, 1) in the nullspace of AT CA. 

5 In the fixed-free problem, the matrix A is square and invertible. We can solve AT y = 
1 separately from Au = e. Do the same for the differential equation: 

dy 
Solve - dx = [(x) with y(1) = 0. Graph y(x) if [(x) = 1. 
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6 The 3 by 3 matrix K 1 = AT CIA 1 in equation (6) splits into three "element matrices" 
CI EI + C2E2 + C3E3. Write down those pieces, one for each c. Show how they 
come from column times row multiplication of AT CIA 1. This is how finite element 
stiffness matrices are actually assembled. 

7 For five springs and four masses with both ends fixed, what are the matrices A and 
C and K? With C = I solve Ku = ones(4). 

8 Compare the solution u = (UI' U2, U3, U4) in Problem 7 to the solution of the con
tinuous problem -u" = I with u(O) = 0 and u(l) = O. The parabola u(x) should 
correspond at x = t, ~, %, ~ to u-is there a (.6.xf factor to account for? 

9 Solve the fixed-free problem -u" = mg with u(O) = 0 and u'(l) = O. Compare 
u (x) at x = ~, ~, ~ with the vector u = (3mg, 5mg, 6mg) in Example 2. 

10 Suppose CI = C2 = C3 = C4 = 1, ml = 2 and m2 = m3 = 1. Solve ATCA u = 
(2,1,1) for this fixed-fixed line of springs. Which mass moves the most (largest u)? 

11 (MATLAB) Find the displacements u (l), ... , u (l00) of 100 masses connected by 
springs all with C = 1. Each force is I(i) = .01. Print graphs of u with fixed-fixed 
and fixed-free ends. Note that diag(ones(n, 1), d) is a matrix with n ones along 
diagonal d. This print command will graph a vector u: 

plot(u, '+'); xlabel('mass number'); ylabel('movement'); print 

12 (MATLAB) Chemical engineering has a first derivative dujdx from fluid velocity as 
well as d 2ujdx2 from diffusion. Replace dujdx by aforward difference, then a 
centered difference, then a backward difference, with .6.x = i. Graph your three 
numerical solutions of 

d 2u du 
- dx 2 + 10 dx = 1 with u(O) = u(l) = O. 

This convection-diffusion equation appears everywhere. It transforms to the 
Black-Scholes equation for option prices in mathematical finance. 

Problem 12 is developed into the first MATLAB homework in my 18.085 course on 
Computational Science and Engineering at MIT. Videos on ocw.mit.edu. 
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8.2 Graphs and Networks 

Over the years I have seen one model so often, and I found it so basic and useful, that I 
always put it first. The model consists of nodes connected by edges. This is called a graph. 

Graphs of the usual kind display functions f(x). Graphs of this node-edge kind lead 
to matrices. This section is about the incidence matrix of a graph-which tells how the n 
nodes are connected by the m edges. Normally m > n, there are more edges than nodes. 

For any m by n matrix there are two fundamental subspaces in Rn and two in Rm. They 
are the row spaces and nullspaces of A and AT. Their dimensions are related by the most 
important theorem in linear algebra. The second part ofthat theorem is the orthogonality of 
the subspaces. Our goal is to show how examples from graphs illuminate the Fundamental 
Theorem of Linear Algebra. 

We review the four subspaces (for any matrix). Then we construct a directed graph and 
its incidence matrix. The dimensions will be easy to discover. But we want the subspaces 
themselves-this is where orthogonality helps. It is essential to connect the subspaces to 
the graph they come from. By specializing to incidence matrices, the laws of linear algebra 
become Kirchhoff's laws. Please don't be put off by the words "current" and "voltage" and 
"Kirchhoff." These rectangular matrices are the best. 

Every entry of an incidence matrix is 0 or 1 or -1. This continues to hold during 
elimination. All pivots and multipliers are ± 1. Therefore both factors in A = L U also 
contain 0, I, -1. So do the nullspace matrices! All four subspaces have basis vectors with 
these exceptionally simple components. The matrices are not concocted for a textbook, 
they come from a model that is absolutely essential in pure and applied mathematics. 

Here is a first incidence matrix. Notice -1 and 1 in each row. This matrix takes 
differences in voltage, across six edges of a graph. The voltages are Xl, X2, X3, X4 at the 
four nodes in Figure 8.4-where we will construct this matrix A. Its echelon form is U: 

-1 1 0 0 -1 1 0 0 
Incidence -1 0 1 0 0 -1 1 0 
matrix 

A= 
0 -1 1 0 

reduces to U= 
0 0 -1 1 

6 edges -1 0 0 1 0 0 0 0 
4 nodes 0 -1 0 1 0 0 0 0 

0 0 -1 1 0 0 0 0 

The nullspace of A and U is the line through x = (1,1,1,1). The column spaces of A and 
U have dimension r = 3. The pivot rows are a basis for the row space. 

Figure 8.3 shows more-the subspaces are orthogonal. Every vector in the nullspace is 
perpendicular to every vector in the row space. This comes directly from the m equations 
Ax = O. For A and U above, x = (1, I, 1, 1) is perpendicular to all rows and thus to the 
whole row space. Equal voltages produce no current! 

I would like to review the Four Fundamental Subspaces before using them. The 
whole point will be to see their meaning on the network. 
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row 
space 
of A 

dimn r 

column 
space 
of A 
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Figure 8.3: Big picture: The four subspaces with their dimensions and orthogonality. 

Start with an m by n matrix. Its columns are vectors in Rm. Their linear combinations 
produce the column space C(A), a subspace of Rm. Those combinations are exactly the 
matrix-vector products Ax. 

The rows of A are vectors in Rn (or they would be, if they were column vectors). Their 
linear combinations produce the row space. To avoid any inconvenience with rows, we 
transpose the matrix. The row space becomes C(AT), the column space of AT. 

The central questions of linear algebra come from these two ways of looking at the 
same numbers, by columns and by rows. 

The nullspace N (A) contains every x that satisfies Ax = O-this is a subspace of Rn. 
The "left" nullspace contains ~ll solutions to AT y = O. Now y has m components, and 
N(AT) is a subspace ofRm. Written as y T A = OT, we are combining rows of A to produce 
the zero row. The four subspaces are illustrated by Figure 8.3, which shows Rn on one side 
and Rm on the other. The link between them is A. 

The information in that figure is crucial. First come the dimensions, which obey the 
two central laws of linear algebra: 

When the row space has dimension r, the nullspace has dimension n - r. Elimination 
leaves these two spaces unchanged, and the echelon form U gives the dimension count. 
There are r rows and columns with pivots. There are n - r free columns without pivots, 
and those lead to vectors in the nullspace. 
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This review of the subspaces applies to any matrix A-only the example was special. 
Now we concentrate on that example. It is the incidence matrix for a particular graph, and 
we look to the graph for the meaning of every subspace. 

Directed Graphs and Incidence Matrices 

Figure 8.4 displays a graph with m = 6 edges and n = 4 nodes, so the matrix A is 6 by 
4. It tells which nodes are connected by which edges. The entries -1 and + 1 also tell 
the direction of each arrow (this is a directed graph). The first row -1, 1,0, 0 of A gives a 
record of the first edge from node 1 to node 2: 

CD 

4 2 

@~----...-----~ 
3 

A= 

® 

node 
CD®®@ 
-1 1 0 0 
-1 0 1 0 

0 -1 1 0 
-1 0 0 1 

0 -1 0 1 
0 o -1 1 

Figure 8.4a: Complete graph with m = 6 edges and n = 4 nodes. 

Row numbers are edge numbers, column numbers are node numbers. 
You can write down A immediately by looking at the graph. 

1 
2 
3 edge 
4 
5 
6 

The second graph has the same four nodes but only three edges. Its incidence matrix is 
3 by 4: 

CD 
node 

(Dcr>®@ 

[~ 
1 0 

~] 
1 

B= 1 1 2 edge 
0 1 3 

CD 2 ® 

Figure 8.4b: Tree with 3 edges and 4 nodes and no loops. 

The first graph is complete--every pair of nodes is connected by an edge. The second graph 
is a tree-the graph has no closed loops. Those graphs are the two extremes, the maximum 
number of edges is ~n(n - 1) and the minimum (a tree) is m = n - 1. 



8.2. Graphs and Networks 423 

The rows of B match the nonzero rows of V-the echelon fonn found earlier. Elimi
nation reduces every graph to a tree. The loops produce zero rows in V. Look at the loop 
from edges 1,2,3 in the first graph, which leads to a zero row: 

[

-1 1 
-1 0 

o -1 
~ ~] ---+ [-~ -! 
1 0 0 -1 

o 
1 
1 

0] [-1 1 o ---+ 0-1 
o 0 0 

o 
I 
o ~] 

Those steps are typical. When two edges share a node, elimination produces the "shortcut 
edge" without that node. If the graph already has this shortcut edge, elimination gives a 
row of zeros. When the dust clears we have a tree. 

An idea suggests itself: Rows are dependent when edges form a loop. Independent 
rows come from trees. This is the key to the row space. We are assuming that the graph 
is connected, and it makes no fundamental difference which way the arrows go. On each 
edge, flow with the arrow is "positive." Flow in the opposite direction counts as negative. 
The flow might be a current or a signal or a force-or even oil or gas or water. 

For the column space we look at Ax, which is a vector of differences: 

~l 0 (j X2 - Xl 

0 1 0' X3 - Xl 

'-1 1 0 X3 - X2 

0 11 ... '1. 
X4 Xl 

(1) 
.. -

··,--1 .() :1 X4 - X2 
;0, =:1 r X4 - X3 

The unknowns Xl, X2, X3, X4 represent potentials or voltages at the nodes. Then Ax gives 
the potential differences or voltage differences across the edges. It is these differences 
that cause flows. We now examine the meaning of each subspace. 

1 The nullspace contains the solutions to Ax = O. All six potential differences are zero. 
This means: All four potentials are equal. Every x in the nullspace is a constant vector 
(c, c, c, c). The nullspace of A is a line in Rn-its dimension is n - r = 1. 

The second incidence matrix B has the same nUllspace. It contains (1, 1, 1, 1): 

[

-1 1 0 
Bx = 0 -1 1 

o 0-1 

We can raise or lower all potentials by the same amount c, without changing the dif
ferences. There is an "arbitrary constant" in the potentials. Compare this with the same 
statement for functions. We can raise or lower f(x) by the same amount C, without chang
ing its derivative. There is an arbitrary constant C in the integral. 

Calculus adds "+C" to indefinite integrals. Graph theory adds (c, c, c, c) to the vector 
x of potentials. Linear algebra adds any vector x n in the nullspace to one particular solution 
of Ax = h. 



424 Chapter 8. Applications 

The "+C" disappears in calculus when the integral starts at a known point x = a. 
Similarly the nullspace disappears when we set X4 = O. The unknown X4 is removed and 
so are the fourth columns of A and B. Electrical engineers would say that node 4 has been 
" grounded." 

2 The row space contains all combinations of the six rows. Its dimension is certainly not 
six. The equation r + (n - r) = n must be 3 + 1 = 4. The rank is r = 3, as we 
also saw from elimination. After 3 edges, we start forming loops! The new rows are not 
independent. 

How can we tell if v = (Vi, V2, V3, V4) is in the row space? The slow way is to combine 
rows. The quick way is by orthogonality: 

v is in the row space if and only if it is perpendicular to (1,1,1,1) in the nUlispace. 

The vector v = (0,1,2,3) fails this test-its components add to 6. The vector (-6,1,2,3) 
passes the test. It lies in the row space because its components add to zero. It equals 
6(row 1) + 5(row 3) + 3(row 6). 

Each row of A adds to zero. This must be true for every vector in the row space. 

3 The column space contains all combinations of the four columns. We expect three in
dependent columns, since there were three independent rows. The first three columns are 
independent (so are any three). But the four columns add to the zero vector, which says 
again that (1, 1, 1, 1) is in the nUllspace. How can we tell if a particular vector b is in the 
column space of an incidence matrix? 

First answer Try to solve Ax = b. That misses all the insight. As before, orthogonal
ity gives a better answer. We are now coming to Kirchhoff's two famous laws of circuit 
theory-the voltage law and current law. Those are natural expressions of "laws" of linear 
algebra. It is especially pleasant to see the key role of the left nullspace. 

Second answer Ax is ,the vector of differences in equation (1). If we add differences 
around a closed loop in the graph, the cancellation leaves zero. Around the big triangle 
formed by edges 1,3, -2 (the arrow goes backward on edge 2) the differences cancel: 

Voltage Law 

The components of A x add to zero around every loop. When b is in the column space of 
A, it must obey the same law: 

By testing each loop, we decide whether b is in the column space. Ax = b can be solved 
exactly when the components of b satisfy all the same dependencies as the rows of A. Then 
elimination leads to 0 = 0, and Ax = b is consistent. 
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4 The left nullspace contains the solutions to AT y = O. Its dimension is m - r = 6 - 3: 

Yl 
-1 -1 0 -1 0 0 Y2 0 

Current 
ATy = 1 0 -1 0 -1 0 Y3 0 

(2) 
Law (KCL) 0 1 1 0 0 -1 Y4 0 

0 0 0 1 1 1 Ys 0 
Y6 

The true number of equations is r = 3 and not n = 4. Reason: The four equations add to 
o = O. The fourth equation follows automatically from the first three. 

What do the equations mean? The first equation says that -Yl - Y2 - Y4 = O. The net 
flow into node 1 is zero. The fourth equation says that Y4 + Ys + Y6 = O. Flow into the 
node minus flow out is zero. The equations AT y = 0 are famous and fundamental: 

KirchlzofPsCurrent Law: 

This law deserves first place among the equations of applied mathematics. It expresses 
"conservation" and "continuity" and "balance." Nothing is lost, nothing is gained. When 
currents or forces are in equilibrium, the equation to solve is AT y = O. Notice the beautiful 
fact that the matrix in this balance equation is the transpose of the incidence matrix A. 

What are the actual solutions to AT y = O? The currents must balance themselves. 
The easiest way is to flow around a loop. If a unit of current goes around the big triangle 
(forward on edge 1, forward on 3, backward on 2), the vector is y = (1, -1,1,0,0,0). 
This satisfies AT y = O. Every loop current is a solution to the Current Law. Around the 
loop, flow in equals flow out at every node. A smaller loop goes forward on edge 1, forward 
on 5, back on 4. Then y = (1,0,0, -1, 1,0) is also in the left nUllspace. 

We expect three independent y's, since 6 - 3 = 3. The three small loops in the graph 
are independent. The big triangle seems to give a fourth y, but it is the sum of flows around 
the small loops. The small loops give a basis for the left nullspace. 

1 

1 

C 4~ 
2 1 0 0 1 

0 0 1 1 
0 1 

+ 
0 1 

+ = 

~ 
1 0 1 0 
1 1 0 0 

2 3 0 1 1 0 
3 

small loops big loop 
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Summary The incloencematriX A· coines ftom~c()ribected graph with nh()des3.I1dm 
edges. . The tow $pa¢e a.ridcolumrtspa.ce haVe dimensions n -'- .1.. The nuUspaces· of A 
a.hdAThaYedimensi([)n J apd11'l-"- n +1.: 

1 The constant vectors (e,c, . .. , c) makeuptb.enullspace of A. 

2 Therearer:nil independent rows;usmgedges from any tree. 

3VoitagelawtThecomponentsofAx addto,?eroaround .yvery 109p. 

4Cutrentlalfl:47y ....... ()is solvep):))' l()qRcuItents~ N(4.T} hasdjineI1~iqI1 In ~t. 
Theteg,t~m ..,.,.r;::: "'-11 + J illt/ep¢n(.ie1,Jioopsillt he grg,ph. 

For every graph in a plane, linear algebra yields Euler's formula: 

(number of nodes) - (number of edges) + (number of small loops) = 1. 

This is n - m + (m - n + 1) = 1. The graph in our example has 4 - 6 + 3 = 1. 
A single triangle has (3 nodes) - (3 edges) + (lloop). On a IO-node tree with 9 edges 

and no loops, Euler's count is 10 - 9 + O. All planar graphs lead to the answer 1. 

Networks and ATCA 

In a real network, the current y along an edge is the product of two numbers. One number 
is the difference between the potentials x at the ends of the edge. This difference is Ax and 
it drives the flow. The other number is the "conductance" c-which measures how easily 
flow gets through. 

In physics and engineering, c is decided by the material. For electrical currents, c 
is high for metal and low for plastics. For a superconductor, c is nearly infinite. If we 
consider elastic stretching, c might be low for metal and higher for plastics. In economics, 
c measures the capacity of an edge or its cost. 

To summarize, the graph is known from its "connectivity matrix" A. This tells the 
connections between nodes and edges. A network goes further, and assigns a conductance c 
to each edge. These numbers CI, ... ,Cm go into the "conductance matrix" C-which is 
diagonal. 

For a network of resistors, the conductance is C = I / (resistance). In addition to Kirch
hoff's Laws for the whole system of currents, we have Ohm's Law for each particular 
current. Ohm's Law connects the current YI on edge 1 to the potential difference X2 - Xl 

between the nodes: 

Ohm's Law: Current along edge = conductance times potential difference. 

Ohm's Law for all m currents is y = -C Ax. The vector Ax gives the potential differences, 
and C multiplies by the conductances. Combining Ohm's Law with Kirchhoff's Current 
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Law AT Y = 0, we get ATCAx = O. This is almost the central equation for network 
flows. The only thing wrong is the zero on the right side! The network needs power from 
outside-a voltage source or a current source-to make something happen. 

Note about signs In circuit theory we change from Ax to -Ax. The flow is from higher 
potential to lower potential. There is (positive) current from node 1 to node 2 when Xl -X2 

is positive-whereas Ax was constructed to yield X2 - X 1. The minus sign in physics and 
electrical engineering is a plus sign in mechanical engineering and economics. Ax versus 
- Ax is a general headache but unavoidable. 

Note about applied mathematics Every new application has its own form of Ohm's law. 
For elastic structures y = CAx is Hooke's law. The stress y is (elasticity C) times (stretch
ing Ax). For heat conduction, Ax is a temperature gradient. For oil flows it is a pressure 
gradient. There is a similar law in Section 8.6 for least squares regression in statistics. 

My textbooks Introduction to Applied Mathematics and Computational Science and 
Engineering (Wellesley-Cambridge Press) are practically built on ATCA. This is the key 
to eqUilibrium in matrix equations and also in differential equations. Applied mathematics 
is more organized than it looks. I have learned to watch/or ATCA. 

We now give an example with a current source. Kirchhoff's Law changes from 
AT y = 0 to AT y = f, to balance the source f from outside. Flow into each node 
still equals flow out. Figure 8.5 shows the network with its conductances CI, ... ,C6, and 
it shows the current source going into node 1. The source comes out at node 4 to keep the 
balance (in = out). The problem is: Find the currents Yl, ..• , Y6 on the six edges. 

X2 F-------..... -------~ x3 
Y3 

Figure 8.5: The currents in a network with a source S into node 1. 

Example 1 All conductances are c = 1, so that C = I. A current Y4 travels directly 
from node 1 to node 4. Other current goes the long way from node 1 to node 2 to node 4 
(this is Yl = Ys). Current also goes from node 1 to node 3 to node 4 (this is Y2 = Y6). We 
can find the six currents by using special rules for symmetry, or we can do it right by using 
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AT CA. Since C = I, this matrix is AT A, the graph Laplacian matrix: 

-1 1 0 0 
-1 -1 0 -1 0 0 -1 0 1 0 

1 0 -1 0 -1 0 0 -1 1 0 
0 1 1 0 0 -1 -1 0 0 1 
0 0 0 1 1 1 0 -1 0 1 

0 0 -1 1 

That last matrix is not invertible! We cannot solve for all four potentials because (1, 1, I, I) 
is in the nUllspace. One node has to be grounded. Setting X4 = 0 removes the fourth row 
and column, and this leaves a 3 by 3 invertible matrix. Now we solve ATCAx = f for the 
unknown potentials Xl, X2, X3, with source S into node 1: 

Voltages [: ~~ =n U~] = [n gives [

Xl] [S/2] X2 = S/4 . 
X3 S/4 

Ohm's Law y = -CAx yields the six currents. Remember C = I and X4 = 0: 

Yl -1 1 0 0 S/4 
Y2 -1 0 1 0 S/2 S/4 

Currents Y3 0 -1 1 0 S/4 0 
Y4 -1 0 0 1 S/4 S/2 
Ys 0 -1 0 1 0 S/4 
Y6 0 0 -1 1 S/4 

Half the current goes directly on edge 4. That is Y 4 = S /2. No current crosses from node 
2 to node 3. Symmetry indicated Y3 = 0 and now the solution proves it. 

The same matrix AT A appears in least squares. Nature distributes the currents to minimize 
the heat loss. Statistics chooses x to minimize the least squares error. 

Problem Set 8.2' 

Problems 1-7 and 8-14 are about the incidence matrices for these graphs. 

1 1 .----------.~ 2 
1 

2 3 4 

edge 3 
3 

5 
3 4 
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1 Write down the 3 by 3 incidence matrix A for the triangle graph. The first row has 
-1 in column 1 and + I in column 2. What vectors (Xl, X2, X3) are in its nullspace? 
How do you know that (1,0,0) is not in its row space? 

2 Write down AT for the triangle graph. Find a vector y in its nUllspace. The compo
nents of yare currents on the edges-how much current is going around the triangle? 

3 Eliminate Xl and X2 from the third equation to find the echelon matrix U. What tree 
corresponds to the two nonzero rows of U? 

-Xl + X2 = b l 

-Xl + X3 = b2 

-X2 + X3 = b3 . 

4 Choose a vector (b l , b2 , b3 ) for which Ax = b can be solved, and another vector b 
that allows no solution. How are those b's related to y = (1, -1, I)? 

5 Choose a vector (ft, 12, h) for which AT y = f can be solved, and a vector f 
that allows no solution. How are those f's related to x = (1, 1, I)? The equation 
AT y = f is Kirchhoff's law. 

6 Multiply matrices to find AT A. Choose a vector f for which AT Ax = f can be 
solved, and solve for x. Put those potentials x and the currents y = -Ax and 
current sources f onto the triangle graph. Conductances are 1 because C = I. 

7 With conductances CI = 1 and C2 = C3 = 2, multiply matrices to find ATCA. For 
f = (1,0, -1) find a solution to ATCAx = f. Write the potentials x and currents 
y = -CAx on the triangle graph, when the current source f goes into node 1 and 
out from node 3. 

8 Write down the 5 by 4 incidence matrix A for the square graph with two loops. Find 
one solution to Ax = 0 and two solutions to ATy = O. 

9 Find two requirements on the b's for the five differences X2 - Xl, X3 - Xl, X3 - X2, 

X4 - X2, X4 - X3 to equal b I , b2 , b3 , b4 , bs. You have found Kirchhoff's law 
around the two in the graph. 

10 Reduce A to its echelon form U. The three nonzero rows give the incidence matrix 
for what graph? You found one tree in the square graph-find the other seven trees. 

11 Multiply matrices to find AT A and guess how its entries come from the graph: 

(a) The diagonal of AT A tells how many __ into each node. 

(b) The off-diagonals -lor ° tell which pairs of nodes are __ 

12 Why is each statement true about AT A? Answer for AT A not A. 

(a) Its nullspace contains (1, 1, 1, 1). Its rank is n - 1. 
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(b) It is positive semidefinite but not positive definite. 

(c) Its four eigenvalues are real and their signs are __ 

13 With conductances Cl = C2 = 2 and C3 = C4 = Cs = 3, multiply the matrices 
ATCA. FindasolutiontoATCAx = f = (1,0,0,-1). Write these potentials x 
and currents y = -CAx on the nodes and edges of the square graph. 

14 The matrix ATCA is not invertible. What vectors x are in its nullspace? Why does 
AT CAx = f have a solution if and only if It + /2 + h + /4 = O? 

15 A connected graph with 7 nodes and 7 edges has how many loops? 

16 For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect it 
to one old node, Euler's formula becomes ( ) - ( ) + ( ) = I. If you connect it 
to two old nodes, Euler's formula becomes ( ) - ( ) + ( ) = 1. 

17 Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph. 

(a) How many columns of A are independent? 

(b) What condition on f makes it possible to solve AT y = f? 

(c) The diagonal entries of AT A give the number of edges into each node. What is 
the sum of those diagonal entries? 

18 Why does a complete graph with n = 6 nodes have m = 15 edges? A tree connect-
ing 6 nodes has edges. 

Note The stoichiometric matrix in chemistry is an important "generalized" incidence 
matrix. Its entries show how much of each chemical species (each column) goes into each 
reaction (each row). 
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8.3 Markov Matrices, Population, and Economics 

This section is about positive matrices: every aij > O. The key fact is quick to state: 
The largest eigenvalue is real and positive and so is its eigenvector. In economics 
and ecology and population dynamics and random walks, that fact leads a long way: 

Markov Amax = 1 Population Amax > 1 Consumption Amax < 1 

Amax controls the powers of A. We will see this first for Amax = 1. 

Markov Matrices 

Suppose we multiply a positive vector Uo = (a, I - a) again and again by this A: 

Markov 
matrix 

A = [.S .3] 
.2 .7 Ul = Auo 

After k steps we have Akuo. The vectors Ul, U2, U3, . .. will approach a "steady state" 
U oo = (.6, .4). This final outcome does not depend on the starting vector: For every Uo we 
converge to the same Uoo . The question is why. 

The steady state equation Auoo = Uoo makes U oo an eigenvector with eigenvalue 1: 

Steady state [.8 .3] [.6] = [.6] . 
.2 .7.4 .4 

Multiplying by A does not change Uoo . But this does not explain why all vectors Uo lead 
to U oo . Other examples might have a steady state, but it is not necessarily attractive: 

B -_ [01 O2] [1] [1] Not Markov has the unattractive steady state B 0 = 0 . 

In this case, the starting vector Uo = (0, 1) will give Ul = (0,2) and U2 = (0,4). The 
second components are doubled. In the language of eigenvalues, B has A = 1 but also 
A = 2- this produces instability. The component of u along that unstable eigenvector is 
multiplied by A, and IAI > 1 means blowup. 

This section is about two special properties of A that guarantee a stable steady state. 
These properties define a Markov matrix, and A above is one particular example: 

1. Every entry of A is nonnegative. 

2. Every column of A adds to 1. 

B did not have Property 2. When A is a Markov matrix, two facts are immediate: 

1. Multiplying a nonnegative Uo by A produces a nonnegative Ul = Auo. 

2. If the components of Uo add to 1, so do the components of u 1 = Auo. 
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Reason: The components of Uo add to 1 when [1 ... 1 ]uo = 1. This is true for each 
column of A by Property 2. Then by matrix multiplication [1 ... I]A = [I ... 1]: 

Components of A Uo add to 1 [1 ... I]AllO = [1 ... l]uo = 1. 

The same facts apply to U2 = AUI and U3 = AU2. Every vector Ak Uo is nonnegative 
with components adding to 1. These are "probability vectors." The limit U oo is also a 
probability vector-but we have to prove that there is a limit. We will show that Amax = 1 
for a positive Markov matrix. 

Example 1 The fraction of rental cars in Denver starts at 510 = .02. The fraction outside 
Denver is .98. Every month, 80% of the Denver cars stay in Denver (and 20% leave). 
Also 5% of the outside cars come in (95% stay outside). This means that the fractions 
Uo = (.02, .98) are multiplied by A: 

First month A = [.80 .05] 
.20 .95 leads to UI = Auo = A [:~~] = [:~~;] . 

Notice that .065 + .935 = 1. All cars are accounted for. Each step multiplies by A: 

Next month U2 = AUI = (.09875, .90125). This is A2uo. 

All these vectors are positive because A is positive. Each vector Uk will have its compo
nents adding to 1. The first component has grown from .02 and cars are moving toward 
Denver. What happens in the long run? 

This section involves powers of matrices. The understanding of A k was our first and 
best application of diagonalization. Where Ak can be complicated, the diagonal matrix A k 
is simple. The eigenvector matrix S connects them: Ak equals SAk S-I . The new applica
tion to Markov matrices uses the eigenvalues (in A) and the eigenvectors (in S). We will 
show that U oo is an eigenvector corresponding to A = 1. 

Since every column of A adds to 1. nothing is lost or gained. We are moving rental cars 
or populations, and no cars or people suddenly appear (or disappear). The fractions add to 
1 and the matrix A keeps them that way. The question is how they are distributed after k 
time periods-which leads us to Ak. 

Solution A k Uo gives the'fractions in and out of Denver after k steps. We diagonalize A to 
understand Ak. The eigenvalues are A = I and .75 (the trace is 1.75). 

Ax = AX A [:~] = I [:~] and 

The starting vector Uo combines Xl and X2. in this case with coefficients 1 and .18: 

Combination of eigenvectors 

Now multiply by A to find Ul. The eigenvectors are multiplied by Al = 1 and A2 = .75: 

Each X is multiplied by A UI = 1 [:~] + (.75)(.18) [-~]. 
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Every month, another. 75 multiplies the vector x 2. The eigenvector x I is unchanged: 

After k steps k [.2] k [-1] Uk = A Uo = .8 + (.75) (.18) 1· 

This equation reveals what happens. The eigenvector x I with A = 1 is the steady state. 
The other eigenvector x 2 disappears because I A I < 1. The more steps we take, the closer 
we come to U oo = (.2, .8). In the limit, }20 of the cars are in Denver and 1

8
0 are outside. 

This is the pattern for Markov chains, even starting from Uo = (0, 1): 

If A i$aPQ$iti)l¢:tv1a1:k()v>llJ~~ (~ntrlesaiI .. · ... ::>Q.,e~chg()I]l.mna(}ds to 1), then 
*1.. . ..... IjsJargerthan\~yoth~r~igenyallle. The·eig~J:1vectQrX:l iSJb,e$teady·st4te: 

The first point is to see that A = 1 is an eigenvalue of A. Reason: Every column of 
A - I adds to 1 - 1 = 0. The rows of A - I add up to the zero row. Those rows are linearly 
dependent, so A - I is singular. Its determinant is zero and A = 1 is an eigenvalue. 

The second point is that no eigenvalue can have IA I > 1. With such an eigenvalue, 
the powers Ak would grow. But Ak is also a Markov matrix! Ak has nonnegative entries 
still adding to I-and that leaves no room to get large. 

A lot of attention is paid to the possibility that another eigenvalue has IA I = 1. 

Example 2 A = [1 ~] has no steady state because A2 = -1. 

This matrix sends all cars from inside Denver to outside, and vice versa. 
The powers Ak alternate between A and I. The second eigenvector X2 = (-1,1) will be 
multiplied by A2 = -1 at every step--and does not become smaller: No steady state. 

Suppose the entries of A or any power of A are all positive-zero is not allowed. 
In this "regular" or "primitive" case, A = I is strictly larger than any other eigenvalue. 
The powers A k approach the rank one matrix that has the steady state in every column. 

Example 3 ("Everybody moves") Start with three groups. At each time step, half of 
group 1 goes to group 2 and the other half goes to group 3. The other groups also split in 
half and move. Take one step from the starting populations PI, P2, P3: 

New populations u 1 = Auo = [; ~ 
1 I 
2" 2" 

A is a Markov matrix. Nobody is born or lost. A contains zeros, which gave trouble in 
Example 2. But after two steps in this new example, the zeros disappear from A2: 

Two-step matrix 

1 
'4 
} 

2" 
1 
'4 
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The eigenvalues of A are Al = 1 (because A is Markov) and A2 = A3 = -!. For A = 1, 

the eigenvector Xl = (t, t, t) will be the steady state. When three equal populations 
split in half and move, the populations are again equal. Starting from Uo = (8, 16,32), 
the Markov chain approaches its steady state: 

The step to U4 will split some people in half. This cannot be helped. The total population 
is 8 + 16 + 32 = 56 at every step. The steady state is 56 times ct, t, t). You can see the 
three populations approaching, but never reaching, their final limits 56/3. 

Challenge Problem 6.7.16 created a Markov matrix A from the number of links be
tween websites. The steady state u will give the Google rankings. Google finds U oo by a 
random walk that follows links (random surfing). That eigenvector comes from counting 
the fraction of visits to each website-a quick way to compute the steady state. 

The size IA21 of the next largest eigenvalue controls the speed of convergence to steady 
state. 

Perron-Frobenius Theorem 

One matrix theorem dominates this subject. The Perron-Frobenius Theorem applies when 
all aij > O. There is no requirement that columns add to 1. We prove the neatest form, 
when all aU > O. 

-. . '," . -,---.:--,- -',-

A:tlnu1ftJj~"S:i~4.~, .··>A.IJ1axx'are~tricJlytp(j$itiJ!~. 
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Proof The key idea is to look at all numbers t such that Ax > t x for some nonnegative 
vector x (other than x = 0). We are allowing inequality in Ax > tx in order to have 
many positive candidates t. For the largest value tmax (which is attained), we will show 
that equality holds: Ax = tmaxx. 

Otherwise, if Ax 2: tmaxx is not an equality, multiply by A. Because A is positive 
that produces a strict inequality A2x > tmaxAx. Therefore the positive vector y = Ax 
satisfies Ay > tmaxY, and tmax could be increased. This contradiction forces the equality 
Ax = tmaxx, and we have an eigenvalue. Its eigenvector x is positive because on the left 
side of that equality, Ax is sure to be positive. 

To see that no eigenvalue can be larger than tmax, suppose Az = AZ. Since A and Z 

may involve negative or complex numbers, we take absolute values: IAlizl = IAzl < Aizi 
by the "triangle inequality." This Izl is a nonnegative vector, so IAI is one of the possible 
candidates t. Therefore IAI cannot exceed tmax-which must be Amax. 
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Population Growth 

Divide the population into three age groups: age < 20, age 20 to 39, and age 40 to 59. 
At year T the sizes of those groups are n 1 , n 2, 11 3. Twenty years later, the sizes have 
changed for two reasons: 

1. Reproduction llr
ew = FI 11.1 + F2 112 + F3 n3 gives a new generation 

2. Survival 11.~ew = PInI and 11.~ew = P211.2 gives the older generations 

The fertility rates are F1 , F2, F3 (F2 largest). The Leslie matrix A might look like this: 

[ ] 

new [F 
~~ =~: 

This is population projection in its simplest form, the same matrix A at every step. In 
a realistic model, A will change with time (from the environment or internal factors). 
Professors may want to include a fourth group, age > 60, but we don't allow it. 

The matrix has A > 0 but not A > O. The Perron-Frobenius theorem still applies 
because A 3 > O. The largest eigenvalue is Amax ~ 1.06. You can watch the generations 
move, starting from 11.2 = 1 in the middle generation: 

1.06 
eig(A) = -1.01 

-0.01 [ 

1.08 0.05 .00] 
A2 = 0.04 1.08 .01 

0.90 0 0 [ 
0.10 1.19 .01] 

A 3 = 0.06 0.05 .00 . 
0.04 0.99 .01 

A fast start would come from Uo = (0, 1,0). That middle group will reproduce 1.1 and 
also survive .92. The newest and oldest generations are in UI = (1.1,0, .92) = column 2 
of A. Then U2 = AUI = A2uo is the second column of A2. The early numbers (transients) 
depend a lot on uo, but the asymptotic growth rate Amax is the same from every start. 
Its eigenvector x = (.63, .58, .~l) shows all three groups growing steadily together. 

Caswell's book on Matrix Population Models emphasizes sensitivity analysis. The 
model is never exactly right. If the F's or P's in the matrix change by 10%, does Amax 
go below 1 (which means extinction)? Problem 19 will show that a matrix change LlA 
produces an eigenvalue change LlA = y T (~A)x. Here x and y T are the right and left 
eigenvectors of A. So x is a column of Sand y T is a row of S-l. 

Linear Algebra in Economics: The Consumption Matrix 

A long essay about linear algebra in economics would be out of place here. A short note 
about one matrix seems reasonable. The consumption matrix tells how much of each input 
goes into a unit of output. This describes the manufacturing side of the economy. 
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Consumption matrix We have n industries like chemicals, food, and oil. To produce a 
unit of chemicals may require .2 units of chemicals, .3 units of food, and .4 units of oil. 
Those numbers go into row 1 of the consumption matrix A: 

[

chemical output] [.2.3.4] [Chemical input] 
food output =.4.4.1 food input . 
oil output .5 .1.3 oil input 

Row 2 shows the inputs to produce food-a heavy use of chemicals and food, not so much 
oil. Row 3 of A shows the inputs consumed to refine a unit of oil. The real consumption 
matrix for the United States in 1958 contained 83 industries. The models in the 1990's 
are much larger and more precise. We chose a consumption matrix that has a convenient 
eigenvector. 

Now comes the question: Can this economy meet demands Yl, Y2, Y3 for chemicals, 
food, and oil? To do that, the inputs PI, P2, P3 will have to be higher-because part of p 
is consumed in producing y. The input is p and the consumption is A p, which leaves the 
output p - A p. This net production is what meets the demand y: 

Prpblern FitjdaVe¢tdr p.ktlChtIi~t p - A p = y. or . p = (I - A) -1 Y . 

Apparently the linear algebra question is whether I - A is invertible. But there is more 
to the problem. The demand vector y is nonnegative, and so is A. The production levels in 
p = (I - A)-I y must also be nonnegative. The real question is: 

When is (I - A)-l a nonnegative matrix? 

This is the test on (I - A)-1 for a productive economy, which can meet any positive 
demand. If A is small compared to I, then A p is small compared to p. There is plenty 
of output. If A is too large, then production consumes more than it yields. In this case the 
external demand y cannot be met. 

"Small" or "large" is decided by the largest eigenvalue Al of A (which is positive): 

If AI> I then (I - A) -I has negative entries 
If Al = 1 then (I - A)-1 fails to exist 
If Al < 1 then (I - A) -I is nonnegative as desired. 

The main point is that last one. The reasoning uses a nice formula for (I - A)-I, which 
we give now. The most important infinite series in mathematics is the geometric series 
1 + x + x 2 + .... This series adds up to 1/(1 - x) provided x lies between -1 and 1. 
When x = 1 the series is 1 + 1 + 1 + ... = 00. When Ixl > 1 the terms xn don't go to 
zero and the series has no chance to converge. 

The nice formula for (I - A)-I is the geometric series of matrices: 

(I - A)-I = I + A + A2 + A3 + .... 
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If you multiply the series S = 1 + A + A2 + ... by A, you get the same series except 
for 1. Therefore S - AS = 1, which is (J - A)S = 1. The series adds to S = (J - A)-1 
if it converges. And it converges if all eigenvalues of A have IA I < 1. 

In our case A > O. All terms of the series are nonnegative. Its sum is (J - A)-1 > O. 

[

.2 .3 .4] [41 25 27] 
Example 4 A = .4 .4 .1 has Amax = .9 and (l - A)-l = 9

1
3 33 36 24 . 

. 5 .1 .3 34 23 36 

This economy is productive. A is small compared to 1, because Amax is .9. To meet the 
demand y, start from p = (1 - A) -1 y. Then A p is consumed in production, leaving 
p - Ap. This is (1 - A)p = y, and the demand is met. 

Example 5 A =[~ ~] has Amax = 2 and (J - A)-1 = -~[~ ~l 
This consumption matrix A is too large. Demands can't be met, because production con
sumes more than it yields. The series 1 + A + A2 + ... does not converge to (J - A)-l 
because Amax > 1. The series is growing while (J - A)-1 is actually negative. 

In the same way 1 + 2 + 4 + ... is not really 1/ (I - 2) = -1. But not entirely false! 

Problem Set 8.3 

Questions 1-12 are about Markov matrices and their eigenvalues and powers. 

1 Find the eigenvalues of this Markov matrix (their sum is the trace): 

A = [.90 .15] 
.10 .85 . 

What is the steady state eigenvector for the eigenvalue Al = I? 

2 Diagonalize the Markov matrix in Problem 1 to A - SAS-1 by finding its other 
eigenvector: 

l 
What is the limit of Ak = SA k S-1 when A k = [! .7~k] approaches [A 8]? 

3 What are the eigenvalues and steady state eigenvectors for these Markov matrices? 

A=[1 .2] o .8 
A = [.2 1] 

.8 0 

1 
4 
1 
"2 
1 
4 n 

4 For every 4 by 4 Markov matrix, what eigenvector of AT corresponds to the (known) 
eigenvalue A = I? 
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5 Every year 2% of young people become old and 3% of old people become dead. 
(No births.) Find the steady state for 

[

young] [.98 
old = .02 

dead k+l .00 

.00 0] [young] 

.97 0 old 

.03 I dead k 

6 For a Markov matrix, the sum of the components of x equals the sum of the compo
nents of Ax . If Ax = AX with A =f:. 1, prove that the components of this non-steady 
eigenvector x add to zero. 

7 Find the eigenvalues and eigenvectors of A. Explain why Ak approaches Aoo : 

A = [.8 .3] 
.2 .7 

AOO = [.6 .6]. 
.4 .4 

Challenge problem: Which Markov matrices produce that steady state (.6, .4)? 

8 The steady state eigenvector of a permutation matrix is ct,~,~, ~). This is not 
approached when Uo = (0,0,0,1). What are Ul and U2 and U3 and U4? What are 
the four eigenvalues of P, which solve A 4 = I? 

Permutation matrix = Markov matrix P= 

o 100 
o 0 1 0 
000 1 
100 0 

9 Prove that the square of a Markov matrix is also a Markov matrix. 

10 If A = [~~] is a Markov matrix, its eigenvalues are 1 and __ . The steady state 
eigenvector is Xl = __ 

11 Complete A to a Markov matrix and find the steady state eigenvector. When A is a 
symmetric Marko,:, matrix, why is Xl = (1, ... ,1) its steady state? 

A= [
.7 .1 .2] 
.~ .6 .~ . 

12 A Markov differential equation is not du/dt = Au but du/dt = (A -l)u. The 
diagonal is negative, the rest of A - I is positive. The columns add to zero. 

Find the eigenvalues of B = A - I = [-:~ _:~]. Why does A - I have A = O? 

When eAt t and eA2t mUltiply x 1 and x 2, what is the steady state as t -+ oo? 
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Questions 13-15 are about linear algebra in economics. 

13 Each row of the consumption matrix in Example 4 adds to .9. Why does that make 
A = .9 an eigenvalue, and what is the eigenvector? 

14 Multiply / + A + A 2 + A 3 + . .. by / - A to show that the series adds to __ 

For A = [~ Z], find A 2 and A 3 and use the pattern to add up the series. 

15 For which of these matrices does I + A + A 2 + ... yield a nonnegative matrix 
(l - A)-I? Then the economy can meet any demand: 

A = [~ ~] A = [0 4] 
. 2 ° A _ [.s 1] 

- .S ° . 
If the demands are y = (2,6), what are the vectors p = (l - A)-l y? 

16 (Markov again) This matrix has zero determinant. What are its eigenvalues? 

[

.4 .2 .3] 
A = .2 .4 .3 . 

.4 .4 .4 

Find the limits of Akuo starting from Uo = (1,0,0) and then Uo = (100,0,0). 

17 If A is a Markov matrix, does I + A + A2 + ... add up to (/ - A)-I? 

18 For the Leslie matrix show that det(A -AI) = ° gives FIA 2 + F2P1A + F3Pl P2 = 
A 3 . The right side A 3 is larger as A ----+ 00. The left side is larger at A = 1 if 
Fl + F2 PI + F3 PI P2 > 1. In that case the two sides are equal at an eigenvalue 
Amax > 1: growth. 

19 Sensitivity of eigenvalues: A matrix change I::!. A produces eigenvalue changes I::!. A. 
The formula for those changes 1::!.)1.1,".' I::!.An is diag(S-1 I::!. A S). Challenge: 

Start from AS = SA. The eigenvectors and eigenvalues change by I::!.S and I::!. A : 

(A+I::!.A)(S+~S) = (S+I::!.S)(A+I::!.A) becomes A(I::!.S)+(I::!.A)S = S(I::!.A)+(I::!.S)A. 

Small terms (I::!.A)(~S) and (ilS)(I::!.A) are ignored. Multiply the last equation by 
S-I. From the inner terms, the diagonal part of S-I(I::!.A)S gives ilA as we want. 
Why do the outer terms S-1 A I::!.S and S-1 I::!.S A cancel on the diagonal? 

Explain S-1 A = AS-1 and then diag(A S-1 I::!.S) = diag(S-1 I::!.S A). 

20 Suppose B > A > 0, meaning that each bij > aij > 0. How does the Perron
Frobenius discussion show that Amax(B) > AmaxCA)? 
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8.4 Linear Programming 

Linear programming is linear algebra plus two new ideas: inequalities and minimization. 
The starting point is still a matrix equation Ax = b. But the only acceptable solutions 
are nonnegative. We require x > 0 (meaning that no component of x can be negative). 
The matrix has n > m, more unknowns than equations. If there are any solutions x > 0 
to Ax = b, there are probably a lot. Linear programming picks the solution x* > 0 
that minimizes the cost: 

ThecQstisctil 1-.••• + CnXn .1'hewinnin~ vectorx·is 
(he nonnegativesolution()fAx=. b. that hass~ClllestcQst. 

Thus a linear programming problem starts with a matrix A and two vectors band c: 

i) A has n > m: for example A = [I I 2] (one equation, three unknowns) 

ii) b has m components for m equations Ax = b: for example b = [4] 

iii) The cost vector c has n components: for example c = [5 3 8]. 

Then the problem is to minimize c • x subject to the requirements Ax = b and x > 0: 

Minimize 5Xl + 3X2 + 8X3 subject to Xl + X2 + 2X3 = 4 and XI, X2, X3 ~ o. 

We jumped right into the problem, without explaining where it comes from. Linear pro
gramming is actually the most important application of mathematics to management. De
velopment of the fastest algorithm and fastest code is highly competitive. You will see that 
finding x * is harder than solving Ax = b, because of the extra requirements: x * > 0 and 
minimum cost c T x *. We will explain the background, and the famous simplex method, and 
interior point methods, after solving the example. 

Look first at the "constraints": Ax = b and x > o. The equation Xl + X2 + 2X3 = 4 
gives a plane in three dimensions. The nonnegativity Xl > 0, x2 > 0, x3 > 0 chops the 
plane down to a triangle. The solution x* must lie in the triangle PQR in Figure 8.6. 

Inside that triangle, 'all components of x are positive. On the edges of PQR, 
one component is zero. At the comers P and Q and R, two components are zero. The 
optimal solution x* will be one of those corners! We will now show why. 

The triangle contains all vectors x that satisfy Ax = b and x > O. Those x's are called 
feasible points, and the triangle is the feasible set. These points are the allowed candidates 
in the minimization of c . x, which is the final step: 

The vectors that have zero cost lie on the plane 5XI + 3X2 + 8X3 = O. That plane does 
not meet the triangle. We cannot achieve zero cost, while meeting the requirements on x. 
So increase the cost C until the plane 5XI + 3X2 + 8X3 = C does meet the triangle. 
As C increases, we have parallel planes moving toward the triangle. 
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R = (0,0,2) 
(2 hours by computer) 

441 

Example with four homework problems 
Ax = h is the plane Xl + X2 + 2X3 = 4 
Triangle has Xl > 0, X2 > 0, X3 > ° 

~=---+---::=+"""'----+--:::;::::'" Q = (0, 4, 0) (4 hours by student) 

p = (4,0,0) (4 hours by Ph.D.) 

corners have 2 zero components 
cost c T X = 5x 1 + 3x 2 + 8x 3 

Figure 8.6: The triangle contains all nonnegative solutions: Ax = h and x > 0. The 
lowest cost solution x * is a comer P, Q, or R of this feasible set. 

The first plane 5Xl + 3X2 + 8X3 = C to touch the triangle has minimum cost C. 
The point where it touches is the solution x·. This touching point must be one of the 
comers P or Q or R. A moving plane could not reach the inside of the triangle before it 
touches a comer! So check the cost 5XI + 3X2 + 8X3 at each comer: 

l' = (4, Q, 0) costs 20 Q = (0,4,0) costs 12 R = (0,.o,.4)908t8 .. 1..6 ... 

The winner is Q. Then x * = (0,4,0) solves the linear programming problem. 
If the cost vector c is changed, the parallel planes are tilted. For small changes, Q 

is still the winner. For the cost c • x = 5Xl + 4X2 + 7X3, the optimum x* moves to 
R = (0,0,2). The minimum cost is now 7·2 = 14. 

Note 1 Some linear programs maximize profit instead of minimizing cost. The mathemat
ics is almost the same. The parallel planes start with a large value of C, instead of a small 
value. They move toward the origin (instead of away), as C gets smaller. The first touching 
point is still a corner. 

Note 2 The requirements Ax ,= h and x > ° could be impossible to satisfy. The equation 
Xl + X2 + X3 = -1 cannot be solved with x > 0. Thatfeasible set is empty. 

Note 3 It could also happen that the feasible set is unbounded. If the requirement is 
Xl + X2 - 2X3 = 4, the large positive vector (100,100,98) is now a candidate. So is 
the larger vector (1000, 1000,998). The plane Ax = h is no longer chopped off to a 
triangle. The two comers P and Q are still candidates for x *, but R moved to infinity. 

Note 4 With an unbounded feasible set, the minimum cost could be -00 (minus infinity). 
Suppose the cost is -Xl - X2 + X3. Then the vector (100, 100,98) costs C = -102. 
The vector (1000, 1000,998) costs C = -1002. We are being paid to include Xl and X2, 

instead of paying a cost. In realistic applications this will not happen. But it is theoretically 
possible that A, h, and c can produce unexpected triangles and costs. 



442 Chapter 8. Applications 

The Primal and Dual Problems 

This first problem will fit A, b, c in that example. The unknowns Xl, X2, X3 represent hours 
of work by a Ph.D. and a student and a machine. The costs per hour are $5, $3, and $8. 
(I apologize for such low pay.) The number of hours cannot be negative: Xl > 0, X2 > 
0, X3 > 0. The Ph.D. and the student get through one homework problem per hour. The 
machine solves two problems in one hour. In principle they can share out the homework, 
which has four problems to be solved: Xl + X2 + 2X3 = 4. 

The problem is to finish the four problems at minimum cost c T x. 

If all three are working, the job takes one hour: Xl = X2 = X3 = 1. The cost is 
5 + 3 + 8 = 16. But certainly the Ph.D. should be put out of work by the student (who 
is just as fast and costs less-this problem is getting realistic). When the student works 
two hours and the machine works one, the cost is 6 + 8 and all four problems get solved. 
We are on the edge Q R of the triangle because the Ph.D. is not working: Xl = 0. 
But the best point is all work by student (at Q) or all work by machine (at R). In 
this example the student solves four problems in four hours for $ 12-the minimum cost. 

With only one equation in Ax = b, the comer (0,4,0) has only one nonzero 
component. When Ax = b has m equations, corners have m nonzeros. We solve 
Ax = b for those m variables, with n - m free variables set to zero. But unlike Chap
ter 3, we don't know which m variables to choose. 

The number of possible comers is the number of ways to choose m components out 
of n. This number "n choose m" is heavily involved in gambling and probability. With 
n = 20 unknowns and m = 8 equations (still small numbers), the "feasible set" can have 
20!/8!12! comers. That number is (20)(19)··· (13) = 5,079,110,400. 

Checking three comers for the minimum cost was fine. Checking five billion comers is 
not the way to go. The simplex method described below is much faster. 

The Dual Problem In linear programming, problems come in pairs. There is a minimum 
problem and a maximum problem-the original and its "dual." The original problem was 
specified by a matrix A and two vectors band c. The dual problem transposes A and 
switches band c: Maximize b . y. Here is the dual to our example: 

A cheater offers to solve homework problems by selling the answers. 
The charge is y dollars per problem, or 4y altogether. (Note how b = 4 
has gone into the cost.) The cheater must be as cheap as the Ph.D. or student 
or machine: y < 5 and y < 3 and 2y < 8. (Note how c = (5,3,8) has gone 
into inequality constraints). The cheater maximizes the income 4y. 

:. ':~, '.;- ';'.-.. -'-, .'~. '-.- .\" ~,~.- .. , .. , , :'.-.-

'E+';;~ful~t"F::~;:i;'t y subject to AT y < c l'; 

The maximum occurs when y = 3. The income is 4y = 12. The maximum in the dual 
problem ($12) equals the minimum in the original ($12). Max = min is duality. 
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'. .' .. ·l$.eiiher· p.l:.ijklem:.h4~q .. ",~~!. .l?({c,t,4r :e.t:* (Jt~Ji¥ii6~1t·§a ... tlq~s.thei·ath~l\ . 
:' ". Afinimu11l co~tc.: x* ;eq~4,tli . maximum income b . y* 

This book started with a row picture and a column picture. The first "duality theorem" was 
about rank: The number of independent rows equals the number of independent columns. 
That theorem, like this one, was easy for small matrices. Minimum cost = maximum 
income is proved in our text Linear Algebra and Its Applications. One line will establish 
the easy half of the theorem: The cheater's income b T Y cannot exceed the honest cost: 

If Ax =b,x ~O,ATy ~c then bTy = (Ax)Ty =xT(ATy)~xTc. (1) 

The full duality theorem says that when b T Y reaches its maximum and x T c reaches its 
minimum, they are equal: b • y * = c . x *. Look at the last step in (1), with < sign: 

The dot product of x > 0 and s = c - AT Y > 0 gave x T s > O. This is x T AT Y < X T C • 

The Simplex Method 

Elimination is the workhorse for linear equations. The simplex method is the workhorse for 
linear inequalities. We cannot give the simplex method as much space as elimination, but 
the idea can be clear. The simplex method goes from one corner to a neighboring corner of 
lower cost. Eventually (and quite soon in practice) it reaches the corner of minimum cost. 

A corner is a vector x > 0 that satisfies the m equations Ax = b with at most m 
positive components. The other n - m components are zero. (Those are the free variables. 
Back substitution gives the m basic variables. All variables must be nonnegative or x is 
a false corner.) For a neighboring corner, one zero component of x becomes positive and 
one positive component becomes zero. 

The simplex method must decide which component "enters" by becoming positive, 
and which component "leaves'~ by becoming zero. That exchange is chosen so as to 
lower the total cost. This is one step of the simplex method, moving toward x * . 

Here is the overall plan. Look at each zero component at the current corner. If it 
changes from 0 to I, the other nonzeros have to adjust to keep Ax = b. Find the new 
x by back substitution and compute the change in the total cost c . x. This change is the 
"reduced cost" r of the new component. The entering variable is the one that gives the 
most negative r. This is the greatest cost reduction for a single unit of a new variable. 

Example 1 Suppose the current corner is P = (4,0,0), with the Ph.D. doing all the 
work (the cost is $20). If the student works one hour, the cost of x = (3, 1,0) is down to 
$18. The reduced cost is r = -2. If the machine works one hour, then x = (2,0,1) also 
costs $18. The reduced cost is also r = -2. In this case the simplex method can choose 
either the student or the machine as the entering variable. 
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Even in this small example, the first step may not go immediately to the best x * . 
The method chooses the entering variable before it knows how much of that variable 
to include. We computed r when the entering variable changes from 0 to I, but one unit 
may be too much or too little. The method now chooses the leaving variable (the Ph.D.). 
It moves to comer Q or R in the figure. 

The more of the entering variable we include, the lower the cost. This has to stop 
when one of the positive components (which are adjusting to keep Ax = b) hits zero. The 
leaving variable is the first positive Xi to reach zero. When that happens, a neighboring 
comer has been found. Then start again (from the new comer) to find the next variables to 
enter and leave. 

When all reduced costs are positive, the current corner is the optimal x * . 
No zero component can become positive without increasing c . x. No new variable should 
enter. The problem is solved (and we can show that y* is found too). 

Note Generally x* is reached in an steps, where a is not large. But examples have been 
invented which use an exponential number of simplex steps. Eventually a different ap
proach was developed, which is guaranteed to reach x * in fewer (but more difficult) steps. 
The new methods travel through the interior of the feasible set. 

Example 2 Minimize the cost c· x = 3XI + X2 + 9X3 + X4. The constraints are x > 0 
and two equations Ax = b: 

Xl + 2X3 + X4 = 4 

X2 + X3 -X4 = 2 

m = 2 equations 

n = 4 unknowns. 

A starting comer is x = (4,2,0,0) which costs c . x = 14. It has m = 2 nonzeros and 
n - m = 2 zeros. The zeros are X3 and X4. The question is whether X3 or X4 should enter 
(become nonzero). Try one unit of each of them: 

If X3 = 1 and X4 = 0, then x = (2,1,1,0) costs 16. 
'1£.,*4- ., ·1.and~3 ..... ,..t),. tllerLx . (3,,3f O,t) Costs 13 ~ . 

, 
Compare those costs with 14. The reduced cost of X3 is r = 2, positive and useless. The 
reduced cost of X4 is r = -1, negative and helpful. The entering variable is X4. 

How much of X4 can enter? One unit of X4 made Xl drop from 4 to 3. Four units will 
make Xl drop from 4 to zero (while X2 increases all the way to 6). The leaving variable is 
Xl. The new comer is x = (0,6,0,4), which costs only c . x = 10. This is the optimal 
x*, but to know that we have to try another simplex step from (0,6,0,4). Suppose Xl or 
X3 tries to enter: 

Start from the 
corner (0,6,0,4) 

If Xl = 1 and X3 = 0, 
If X3 = 1 and Xl = 0, 

then x = (1,5,0,3) costs 11. 
then x = (0,3, 1,2) costs 14. 

Those costs are higher than 10. Both r's are positive-it does not pay to move. The current 
comer (0,6,0, 4) is the solution x * . 
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These calculations can be streamlined. Each simplex step solves three linear systems 
with the same matrix B. (This is the m by m matrix that keeps the m basic columns of A.) 
When a column enters and an old column leaves, there is a quick way to update B-1• That 
is how most codes organize the simplex method. 

Our text on Computational Science and Engineering includes a short code with com
ments. (The code is also on math.mit.edu/cse) The best y* solves m equations AT y* = c 
in the m components that are nonzero in x *. Then we have optimality x T s = 0 and this is 
duality: Either xj = 0 or the "slack" in s* = c - AT y* has sj = O. 

When x* = (0,4,0) was the optimal comer Q, the cheater's price was set by y* = 3. 

Interior Point Methods 

The simplex method moves along the edges of the feasible set, eventually reaching the 
optimal comer x*. Interior point methods move inside the feasible set (where x > 0). 
These methods hope to go more directly to x *. They work well. 

One way to stay inside is to put a barrier at the boundary. Add extra cost as a 
logarithm that blows up when any variable x j touches zero. The best vector has x > O. 
The number e is a small parameter that we move toward zero. 

Barrietprob.eril Minimize c T x - e (log Xl + ... + log xn) with Ax = b (2) 

This cost is nonlinear (but linear programming is already nonlinear from inequalities). 
The constraints X j > 0 are not needed because log X j becomes infinite at x j = O. 

The barrier gives an approximate problem for each e. The m constraints Ax = b have 
Lagrange multipliers YI, ... , Ym. This is the good way to deal with constraints. 

y from Lagrange 

aLlay = 0 brings back Ax = b. The derivatives 8LI8xj are interesting! 

. Qptilfialityin 
·b:arrierpbm· .. 

(3) 

The true problem has Xjs) = O. The barrier problem has xis) = e. The solutions x*(e) 
lie on the central path to x * (0). Those n optimality equations x j s) = e are nonlinear, and 
we solve them iteratively by Newton's method. 

The current x, y, s will satisfy Ax = b, x > 0 and AT y + s = c, but not x j S j = e. 
Newton's method takes a step b.x, b.y, b.s. By ignoring the second-order term b.x b.s 
in (x + !:lx) (s + b.s) = (J, the corrections in x, y, s come from linear equations: 

Newton step 
A b.x = 0 

ATb.y + b.s = 0 
Sjb.Xj + x)b.Sj = e - Xjs) 

(5) 
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Newton iteration has quadratic convergence for each e, and then e approaches zero. 
The duality gap x T s generally goes below 10-8 after 20 to 60 steps. The explanation 
in my Computational Science and Engineering textbook takes one Newton step in detail, 
for the example with four homework problems. I didn't intend that the student should end 
up doing all the work, but x * turned out that way. 

This interior point method is used almost "as is" in commercial software, for a large 
class of linear and nonlinear optimization problems. 

Problem Set 8.4 
1 Draw the region in the xy plane where x + 2y = 6 and x > ° and y > 0. Which 

point in this "feasible set" minimizes the cost c = x + 3y? Which point gives 
maximum cost? Those points are at comers. 

2 Draw the region in the xy plane where x + 2y < 6, 2x + y < 6, x > 0, y > 0. It 
has four comers. Which comer minimizes the cost c = 2x - y? 

3 What are the comers of the set Xl + 2X2 - X3 = 4 with Xl, x2, x3 all > o? Show 
that the cost Xl + 2X3 can be very negative in this feasible set. This is an example of 
unbounded cost: no minimum. 

4 Start at x = (0,0,2) where the machine solves all four problems for $16. Move 
to x = (0,1, ) to find the reduced cost r (the savings per hour) for work by the 
student. Find r for the Ph.D. by moving to x = (I, 0, ) with 1 hour of Ph.D. work. 

S Start Example 1 from the Ph.D. comer (4,0,0) with c changed to [5 3 7]. Show 
that r is better for the machine even when the total cost is lower for the student. The 
simplex method takes two steps, first to the machine and then to the student for x *. 

6 Choose a different cost vector c so the Ph.D. gets the job. Rewrite the dual problem 
(maximum income to the cheater). 

7 A six-problem homework on which the Ph.D. is fastest gives a second constraint 
2Xl + X2 + X3 = .6. Then x = (2,2,0) shows two hours of work by Ph.D. and 
student on each ho~ework. Does this x minimize the cost c T x with c = (5,3,8) ? 

8 These two problems are also dual. Prove weak duality, that always y T b < C T x: 

Primal problem Minimize c T x with Ax > b and x > O. 
Dual problem Maximize y T b with AT y < c and y ~ O. 
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8.5 Fourier Series: Linear Algebra for Functions 

This section goes from finite dimensions to infinite dimensions. I want to explain linear 
algebra in infinite-dimensional space, and to show that it still works. First step: look back. 
This book began with vectors and dot products and linear combinations. We begin by 
converting those basic ideas to the infinite case-then the rest will follow. 

What does it mean for a vector to have infinitely many components? There are two 
different answers, both good: 

1. The vector becomes v = (VI, V2, V3,·· .). It could be (1,4, i, .. . ). 
2. The vector becomes a function f(x). It could be sinx. 

We will go both ways. Then the idea of Fourier series will connect them. 
After vectors come dot products. The natural dot product of two infinite vectors 

(VI, V2, .. ') and (WI, W2,"') is an infinite series: 

Dot product (1) 

This brings a new question, which never occurred to us for vectors in Rn. Does this infinite 
sum add up to a finite number? Does the series converge? Here is the first and biggest 
difference between finite and infinite. 

When v = w = (1, I, 1, ... ), the sum certainly does not converge. In that case 
v . w = 1 + 1 + 1 + ... is infinite. Since v equals w, we are really computing V· v = 
IIvll2 = length squared. The vector (1, 1, 1, ... ) has infinite length. We don't want that 
vector. Since we are making the rules, we don't have to include it. The only vectors to be 
allowed are those with finite length: 

DEFINITION The vector (VI, V2, . •. ) is in our infinite-dimensional "Hilbert space" if and 
only if its length II v II is finite: 

IIvl12 = V· v = vf + v~ + v~ + ... must add to a finite number. 

Example 1 The vector v = (1, 4, i, ... ) is included in Hilbert space, because its length 

is 2/ J3. We have a geometric series that adds to 4/3. The length of v is the square root: 

v.v=I+ 1 +...L+ ... = 1 -±3' 
4 16 1 _ 1 

4 

Length squared 

Question If v and w have finite length, how large can their dot product be? 

Answer The sum V· W = VI WI + V2W2 + ... also adds to a finite number. We can safely 
take dot products. The Schwarz inequality is still true: 

Schwarz inequality (2) 

The ratio of V· w to Ilvllllwll is still the cosine of e (the angle between v and w). Even in 
infinite-dimensional space, Icos e I is not greater than 1. 
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Now change over to functions. Those are the "vectors." The space of functions f(x), 
g(x), hex), ... defined for 0 < x < 2re must be somehow bigger than Rn. What is the dot 
product of f(x)andg(x)? What is the length of f(x)? 

Key point in the continuous case: Sums are replaced by integrals. Instead of a sum 
of v j times W j, the dot product is an integral of f(x) times g(x). Change the "dot" to 
parentheses with a comma, and change the words "dot product" to inner product: 

DEFINITION· .The'innerproductof f{x),and.g(x), ,and the lengihsqaared, are 

{27r 
(J, g) = 10 f(x)g(x) dx ahd 

{27r 
IIfl12 = 10 (f(X))2 dx. (3) 

The interval [0,2re] where the functions are defined could change to a different interval 
like [0, 1] or (-00, (0). We chose 2re because our first examples are sinx and cosx. 

Example 2 The length of f(x) = sin x comes from its inner product with itself: 

{27r 
(J, f) = 10 (sin x)2 dx = re. The length of sinx is ,Jii. 

That is a standard integral in calculus-not part of linear algebra. By writing sin2 x as 
t - t cos 2x, we see it go above and below its average value t. Multiply that average by 
the interval length 2re to get the answer re . 

More important: sin x and cos x are orthogonal in function space: 

Inner product 
is zero 

{b {b 2 10 sinxcosxdx = 10 tSin2xdx = [-~cos2x]07r = O. (4) 

This zero is no accident. It is highly important to science. The orthogonality goes beyond 
the two functions sin x and cos x, to an infinite list of sines and cosines. The list contains 
cos Ox (which is 1), sin .xi" cos x, sin 2x, cos 2x, sin 3x, cos 3x, .... 

Every function in that list is orthogonal to every other function in the list. 

Fourier Series 

The Fourier series of a function y(x) is its expansion into sines and cosines: 

We have an orthogonal basis! The vectors in "function space" are combinations of the sines 
and cosines. On the interval from x = 2re to x = 4re, all our functions repeat what they 
did from 0 to 2re. They are "periodic." The distance between repetitions is the period 2re. 
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Remember: The list is infinite. The Fourier series is an infinite series. We avoided 
the vector v = (1, 1, 1,. . .) because its length is infinite, now we avoid a function like 
! + cos x + cos 2x + cos 3x + .... (Note: This is n times the famous delta function 8(x). 
It is an infinite "spike" above a single point. At x = 0 its height! + 1 + 1 + ... is infinite. 
At all points inside 0 < x < 2n the series adds in some average way to zero.) The integral 
of 8(x) is 1. But J 82(x) = 00, so delta functions are excluded from Hilbert space. 

Compute the length of a typical sum f(x): 

(f, f) = 121C 
(ao + al cos x + bl sinx + a2 cos 2x + ... )2 dx 

= fo2K (a~ + a'f cos2 x + b'f sin2 X + ai cos2 2x + ... ) dx 

IIfll2 = 2na~ + n(ai + bi + a~ + ... ). (6) 
The step from line I to line 2 used orthogonality. All products like cos x cos 2x integrate to 
give zero. Line 2 contains what is left-the integrals of each sine and cosine squared. Line 
3 evaluates those integrals. (The integral of 12 is 2n, when all other integrals give n.) If 
we divide by their lengths, our functions become orthonormal: 

1 cos x sin x cos 2x . . . 
~' r=' r=' r=" .. IS an orthonormal baslsjor our junction space. 

v 2n v n v n v n 

These are unit vectors. We could combine them with coefficients Ao, At. R l , A2 , . .. to 
yield a function F(x). Then the 2n and the n's drop out of the formula for length. 

Function length = vector length IIFII2 = (F, F) = A~ + Ai + B; + A~ + .... (7) 

Here is the important point, for f(x) as well as F(x). Thefunction has finite length exactly 
when the vector of coefficients has finite length. Fourier series gives us a perfect match 
between function space and infinite-dimensional Hilbert space. The function is in L 2 , its 
Fourier coefficients are in .e2 . 

The fun.cttQl1Sp~p~cotit~inS}(X)¢~~ctly whentheHilbertspaeec6ntainsthev¢ct~r 
v. ~. laC); al;.hl , .. ; .}Qf'fo1;iri~\co~ftici¢nts. B()thf(~}~d1J have finite length. . 

Example 3 Suppose f(x) is a "square wave," equal to 1 for 0 < x < lL Then f(x) 
drops to -1 for n < x < 2n. The + 1 and -1 repeats forever. This f (x) is an odd 
function like the sines, and all its cosine coefficients are zero. We will find its Fourier 
series, containing only sines: 

) 
4 [Sin x sin 3x sin 5x ] 

Square wave l(x = n -1- + 3 + 5 + .... (8) 

The length is ,.f2i(, because at every point (l(X))2 is (_1)2 or (+ 1)2: 

11/112 = fo2K (f(x»)2 dx = fo2K 1 dx = 2n. 
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At x = 0 the sines are zero and the Fourier series gives zero. This is half way up the jump 
from -1 to + 1. The Fourier series is also interesting when x = ~. At this point the square 
wave equals 1, and the sines in (8) alternate between + 1 and -1 : 

Formula for 7C I = ; (I - ~ + ~ - ~ + ... ). (9) 

Multiply by n to find a magical formula 4(1 - t + ! - t + ... ) for that famous number. 

The Fourier Coefficients 

How do we find the a's and b's which multiply the cosines and sines? For a given func
tion f(x), we are asking for its Fourier coefficients: 

Fourier series f(x) = ao + al cosx + bi sinx + a2 cos 2x + .... 
Here is the way to find a 1. Multiply both sides by cos x. Then integrate from 0 to 2Jr. 
The key is orthogonality! All integrals on the right side are zero, except for cos2 x: 

Coefficient a I f.2H !(x) cos x dx = f.2H a I cos2 X dx = "a I. (10) 

Divide by n and you have a 1. To find any other ak, multiply the Fourier series by cos kx. 
Integrate from 0 to 2n. Use orthogonality, so only the integral of ak cos2 kx is left. That 
integral is nab and divide by n: 

(11) 

The exception is ao. This time we multiply by cos Ox = 1. The integral of 1 is 2n: 

1 121r Constant term ao = - f(x). 1 dx = average value of f(x). 
2n 0 

(12) 

I used those formulas to find the Fourier coefficients for the square wave. The integral of 
f(x) coskx was zero. The integral of f(x) sinkx was 4/ k for odd k. 

Compare Linear Algebra in Rn 

The point to emphasize is how this infinite-dimensional case is so much like the n-dimen
sional case. Suppose the nonzero vectors VI, ... ,Vn are orthogonal. We want to write the 
vector b (instead of the function f(x» as a combination of those v's: 

Finite orthogonal series b = CI VI + C2V2 + ... + CnVn . (13) 

Multiply both sides by vI- Use orthogonality, so vIv2 = O. Only the CI term is left: 

Coefficient CI vIb = civIvi + 0 + ... + O. Therefore CI = vIb/vIvi. (14) 

The denominator V I v 1 is the length squared, like n in equation 11. The numerator v I b 
is the inner product like f f(x) cos kx dx. Coefficients are easy to find when the basis 
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vectors are orthogonal. We are just doing one-dimensional projections, to find the compo
nents along each basis vector. 

The formulas are even better when the vectors are orthonormal. Then we have unit 
vectors. The denominators v I v k are all 1. You know ek = v Ih in another form: 

Equation for c's Cl vd ... + CnVn = h or [VI vn] [:J = h. 

The v's are in an orthogonal matrix Q. Its inverse is QT. That gives the e's: 

Qc = h yields c = QTh. Row by row this is Ck = qIb. 

Fourier series is like having a matrix with infinitely many orthogonal columns. Those 
columns are the basis functions 1, cos x, sin x, .... After dividing by their lengths we have 
an "infinite orthogonal matrix." Its inverse is its transpose. Orthogonality is what reduces 
a series of terms to one single term. 

Problem Set 8.5 

1 Integrate the trig identity 2 cos j x cos kx = cos(j + k)x + cos(j - k)x to show that 
cos jx is orthogonal to cos kx, provided j i- k. What is the result when j = k? 

2 Show that 1, x, and x 2 - 1 are orthogonal, when the integration is from x = -1 to 
x = 1. Write I (x) = 2X2 as a combination of those orthogonal functions. 

3 Find a vector (WI, W2, W3, . .. ) that is orthogonal to v = (I,!, i, ... ). Compute its 
length II w II. 

4 The first three Legendre polynomials are 1, x, and x 2 -1. Choose e so that the fourth 
polynomial x 3 - ex is orthogonal to the first three. All integrals go from -1 to 1. 

5 For the square wave I(x) in Example 3, show that 

2n ' fo I(x) cosx dx = 0 r2n 

Jo I(x) sin x dx = 4 r2n 

Jo I(x) sin2x dx = O. 

Which three Fourier coefficients come from those integrals? 

6 The square wave has 11/112 = 2](. Then (6) gives what remarkable sum for ](2? 

7 Graph the square wave. Then graph by hand the sum of two sine terms in its series, 
or graph by machine the sum of2, 3, and 10 terms. The famous Gibbs phenomenon 
is the oscillation that overshoots the jump (this doesn't die down with more terms). 

8 Find the lengths of these vectors in Hilbert space: 

(a) v = (JI, ~, ~, ... ) 
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(b) v = (l,a,a 2 , ••• ) 

(c) f(x) = 1 + sinx. 

Chapter 8. Applications 

9 Compute the Fourier coefficients ak and bk for f(x) defined from 0 to 2n: 

(a) f(x) = 1 forO < x <n, f(x) = OfonI' < x < 2n 

(b) f(x) = x. 

10 When f(x) has period 2n, why is its integral from -n to n the same as from 0 to 
2n? If f(x) is an odd function, fe-x) = - f(x), show that f027C f(x) dx is zero. 
Odd functions only have sine terms, even functions have cosines. 

11 From trig identities find the only two terms in the Fourier series for f (x): 

(a) f(x) = cos2 x (b) f(x) = cos(x + }-) (c) f(x) = sin3 x 

12 The functions 1, cos x, sin x, cos 2x, sin 2x, ... are a basis for Hilbert space. Write 
the derivatives of those first five functions as combinations of the same five functions. 
What is the 5 by 5 "differentiation matrix" for these functions? 

13 Find the Fourier coefficients ak and bk of the square pulse F(x) centered at x = 0: 
F(x) = 1/ h for Ixl < h/2 and F(x) = 0 for h/2 < Ixl < n. 

As h ~ 0, this F(x) approaches a delta function. Find the limits of ak and bk . . 
The Fourier Series section 4.1 of Computational Science and Engineering explains 
the sine series, cosine series, complete series, and complex series b Ckeikx on 
math.mit.edu/cse. 
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8.6 Linear Algebra for Statistics and Probability 

Statistics deals with data, often in large quantities. Since data tends to go into rectangular 
matrices, we expect to see AT A. The least squares problem Ax ~ b is linear regression. 
The best solution x fits m observations by 11 < m parameters. This is a fundamental 
application of linear algebra to statistics. 

This section goes beyond AT Ax = ATb. These unweighted equations assume that the 
measurements bI , ... ,bm are equally reliable. When there is good reason to expect higher 
accuracy (lower variance) in some bi , those equations should be weighted more heavily. 
With what weights WI, ••• , Wm ? And if the bi are not independent, a covariance matrix :E 
gives the statistics of the errors. Here are key topics in this section: 

1. Weighted least squares and ATCAx = ATCb 

2. Variances ar, ... , a~ and the covariance matrix :!: 

3. Important probability distributions: binomial, Poisson, and normal 

4. Principal Component Analysis (PCA) to find combinations with greatest variance. 

Weighted Least Squares 

To include weights in the m equations Ax = b, multiply each equation i by a weight Wi. 

Put those m weights into a diagonal matrix W. We are replacing Ax = b by WAx = W b. 
The equations are no more and no less solvable-we expect to use least squares. 

The least squares equation AT Ax = ATb changes to (WA)TWAx = (WA)TWb. 
The matrix C = WTW is inside (WA)TWA, in the middle of weighted least squares. 

'. 'yv~(g~t~d '. . .. O: .... ,Jf''r~Js-!t1Z~jie."it~.eq~q#ftn$fQr'~ ... 
le~~tsql1i(r:e~ . 

When n = I and A = column of 1 's, x changes from an average to a weighted average: 

bi + ... + bm __ Wrbi + ... + w;,bm 
Simplest case x = changes to x w = 2 2 (2) 

m WI + ... + wm 

This average x w gives greatest weight to the observations bi that have the largest Wi. 

We always assume that errors have zero mean. (Subtract the mean if necessary, so there is 
no one-sided bias in the measurements.) 

How should we choose the weights Wi? This depends on the reliability of bi • If that 
observation has variance al, then the root mean square error in bi is aj. When we divide 
the equations by al, ... am (left side together with right side), all variances will equall. 
So the weight is Wi = l/ai and the diagonal of C = WTW contains the numbers l/al. 

The statistically correct matrix is C = diag (l/ar, ... , l/a~). 
This is correct provided the errors ej and e j in different equations are statistically indepen
dent. If the errors are dependent, off-diagonal entries show up in the covariance matrix :!:. 
The good choice is still C = :!: -1 as described in this section. 
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Mean and Variance 

The two crucial numbers for a random variable are its mean m and its variance 0-
2 • 

The "expected value" E[e] is found from the probabilities PI, P2, ... of the possible 
errors eI, e2, ... (and the variance 0-2 is always measured around the mean). 

For a discrete random variable, the error e j has probability P j (the P j add to 1): 

Example 1 Flip a fair coin. The result is 1 (for heads) or 0 (for tails). Those events have 
equal probabilities Po = PI = 1/2. The mean is m = 1/2 and the variance is 0-

2 = 1/4: 

1 1 
Mean = (0) - + (1) -

2 2 ( 
1)21 ( 1)21 1 

Variance = 0 - "2 "2 + 1 - "2 "2 = 4· 

Example 2 (Binomial) Flip the fair coin N times and count heads. With 3 flips, we 
see M = 0,1,2, or 3 heads. The chances are 1/8,3/8,3/8,1/8. There are three ways 
to see M = 2 heads: HHT, HTH, and THH, and only HHH for M = 3 heads. 

For all N, the number of ways to see M heads is the binomial coefficient "N choose M". 
Divide by the total number 2N of all possible outcomes to get the probability for each M: 

M heads in 
N coin flips 

1 (N) 1 N! 
PM = 2N M = 2N M!(N-M)! 

1 3! 3 
Check- -- =-

23 2! I! 8 
(4) 

Gamblers know this instinctively. The probabilities PM add to (t + t) N = 1. The mean 
value of the number of heads is m = N /2. The variance around m turns out to be 0- 2 = 
N /4. The standard deviation 0- = -J"Fi/2 measures the expected spread around the mean. 

Example 3 (Poisson) A very unfair coin (small P < < t) is flipped very often (large N). 
The product A = pN is kept fixed. The high probability of tails is 1 - P each time. 
So the chance Po of no heads in N flips (tails every time) is (1 - p)N = (1 - A/ N)N. 
For large N this approaches e-A• The probability P j of j heads in N very unfair flips 
comes out neatly in terms of the crucial number A = pN: 

Poisson applies to counting infrequent events (low p) over a long time T. Then A = pT. 

A continuous random variable will have a probability density function p(x) instead 
of PI, P2, .... "An outcome between x and x + dx has probability p(x) dx." The total 
probability is f p(x) dx = 1, since some outcome must happen. Sums become integrals: 

Mean m = Expected value = f xp(x) dx Variance 0-
2 = f (x - m)2 p(x) dx. (6) 
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The outstanding example of a probability density function p(x) (called the pdf) is the 
normal distribution N(O, (J). This has mean zero by symmetry. Its variance is (J2: 

The graph of p(x) is the famous bell-shaped curve. The integral of p(x) from -(J to (J 

is the probability that a random sample is less than one standard deviation (J from the 
mean. This is near 2/3. MATLAB's randn uses the normal distribution with (J = 1. 

This normal p(x) appears everywhere because of the Central Limit Theorem: The 
average over many independent trials of another distribution (like binomial) will approach 
a normal distribution as N ---+ 00. A shift produces m = ° and rescaling produces (J = 1. 

Normalized headcount 
M -mean M -N12 

x = = r;:r -+ Normal N(O, 1). 
(J v N /2 

The Covariance Matrix 

Now run m different experiments at once. They might be independent, or there might be 
some correlation between them. Each measurement b is now a vector with m components. 
Those components are the outputs bi from the m experiments. 

If we measure distances from the means mi, each error ej = bi - mj has mean zero. 
If two errors ei and e j are independent (no relation between them), their product ej e j 
also has mean zero. But if the measurements are by the same observer at nearly the same 
time, the errors ej and e j could tend to have the same sign or the same size. The errors 
in the m experiments could be correlated. The products eje j are weighted by Pij (their 
probability): covariance (Jij = L L Pijeje j. The sum of el Pa is the variance (J?: 

, ' 

,.O"ij = O"ji = E[e; e j] = expected value of (ei times e j). 

This is the (i, j) and (j, i) entry of the covariance matrix I;. The (i, i) entry is (Jii = (Jl

Example 4 (Multivariate normal) For m random variables, the probability density 
function moves from p(x) to p(b) = p(b!, ... ,bm ). The normal distribution with mean 
zero was controlled by one positive number (J2. Now p(b) is controlled by an m by m 
positive definite matrix I;. This is the covariance matrix and its determinant is I I; I: 

1 e-x2j2a2 
p(x) = --==-

~(J • 

The integral of p(b) over m-dimensional space is 1. The integral of bb T p(b) is I;. 
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The good way to handle that exponent -bT F--1b/2 is to use the eigenvalues and or
thonormal eigenvectors of F- (linear algebra enters here). When!: = QAQT = QAQ-l, 
replacing b by Qc will split pCb) into m one-dimensional normal distributions: 

exp (-bTF--1b/2) = exp (-eTA -lc/2) = (e-cf/ 2Al)". (e-C~/2Am) . 
The determinant has 1F-1 1/ 2=IAI I/2 =(AI,,·Am)I/2. Each integralover-oo<ci <00 is 
back to one dimension, where A = u2 • Notice the wonderful fact that after any linear 
transformation (here c = Q -1 b), we still have a multivariate normal distribution. 

We could even reach variances = I by including ,JA in the change from b to z: 

Standard 
normal 

e-zTz / 2 
b = -JAQz changes p(b)db to p(z)dz = /2 dz 

(2n)m 

This tells us the right weight matrix W to bring Ax = b back to ordinary least squares 
for WAx = W b. We want W b to become the standard normal z. So W will be the inverse 
of ,JA Q. Better than that, C = WTW is the inverse of QAQT which is F-. 

Summary For independent errors, F- is the diagonal matrix diag(ur, ... ,u~). This is 
the usual choice. The right weights Wi for the equations Ax = bare l/Ul,"" l/um 
(this will equalize all variances to 1). The right matrix C = WTW in the middle of the 
weighted least squares equations is exactly F- -1: 

This choice of weighting returns Ax = b to a least squares problem WAx W b with 
equally reliable and independent errors. The usual equation (WA)TWAx = (WA)TWb 
is the same as (9). 

It was Gauss who found this best linear unbiased estimate x. Unbiased because the 
mean of x - x is zero, linear because of equation (9), best because the covariance of x - x 
is as small as possible. That covariance (for error in x, not error in b!) is important: 

, 
p()ya,ri~p~~()fthtfb~$~.,~ ..• P = E [(x - x) (x - x) T] = (AT F- -1 A) -1 . . ·(10); 

Example 5 Your pulse rate is measured ten times by independent doctors, all equally 
reliable. The mean error of each bi is zero, and each variance is u 2 • Then F- = u 2 I. 
The ten equations x = bi produce the 10 by 1 matrix A of all ones. The best estimate x 
is the average of the ten bi. The variance of that average value x is the number P: 

P = (ATF--1 A)-1 = u 2 /1O so averaging reduces the variance. 

This matrix P = (AT F--1 A)-1 tells how reliable is the result x of the experiment 
(Problem 6). P does not depend on the b's in the actual experiment! Those b's have 
probability distributions. Each experiment produces a sample value of x from a sample b. 
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When a small ~ gives good reliability of the inputs b, a small P gives good reliability 
of the outputs x. The key formula P = (AT ~ -1 A) -1 connects those covariances. 

Principal Component Analysis 

These paragraphs are about finding useful information in a data matrix A. Start by mea
suring m properties (m features) of n samples. These could be grades in m courses for 
n students (a row for each course, a column for each student). From each row, subtract 
its average so the sample means are zero. We look for a combination of courses and/or 
combination of students for which the data provides the most information. 

Information is "distance from randomness" and it is measured by variance. A large 
variance in course grades means greater information than a small variance. 

The key matrix idea is the Singular Value Decomposition A = U b V T • We are back 
again to AT A and AAT, because their unit eigenvectors are the singular vectors VI, ... ,Vn 
in V and u 1, ... , urn in U. The singular values in the diagonal matrix b (not the covari
ance) are in decreasing order and al is the most important. Weighting the m courses by 
the components of u 1 gives a "master course" or "eigencourse" with the most significant 
grades. 

Example 6 Suppose the grades A, B, C, F are worth 4,2,0, -6 points. If each course 
and each student has one of each grade, then all means are zero. Here is the grade matrix 
A with (1, 1, 1, 1) in its nullspace (rank 3). To keep integers, the SVD of A will be written 
as 2U times b/4 times (2V)T. So the a's are 12,8,4: 

-6 2 0 4 
o 4 -6 2 
4 0 2-6 
2 -6 4 0 

-1 
-1 

1 
1 

1 -1 
-1 1 
-1 -1 

1 1 

-1 
-1 
-1 

1 
1 

-1 

Weighting the rows (the courses) by Ul = ~(-1, -1, 1, 1) will give the eigencourse. 

Weighting the columns (the students) by VI = ~(1, -1,1, -1) gives the eigenstudent. 
The fraction of the grade matrix that is "explained" by that one course and student is 
al/(al + ai + aj') = 9/14. The a's in the SVD are the variances a2 . 

I guess this master course is what a Director of Admissions is looking for. If all grades 
in gym are the same, that row of A will be all zero-and gym is not part of the master 
course. Probably calculus is a part, but what about students who don't take calculus? The 
problem of missing data (holes in the matrix A) is extremely difficult for social sciences 
and the census and so much of the statistics of experiments. 

Gene expression data Determining the functions of genes, and combinations of genes, 
is a central problem of genetics. Which genes combine to give which properties? Which 
genes malfunction to give which diseases? 

We now have an incredibly fast way to find gene expression data in the lab. A gene 
microarray is often packed onto an Affymetrix chip, measuring tens of thousands of genes 
from one sample (one person). The understanding of genetic data (bioinjormatics) has 
become a tremendous application of linear algebra. 
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Problem Set 8.6 

1 Which line C t + D is the best fit to the three independent measurements 1,2,4 at 
times t = 0, 1,2 if the variances al, af, a~ are 1, 1, 2? Use weights Wi = 1/ ai. 

2 In Problem 1, suppose that the third measurement is totally unreliable. The variance 
a~ becomes infinite. Then the best line will not use . Find the line that goes 
through the first two points and solves the first two equations in Ax = b exactly. 

3 In Problem 1, suppose that the third measurement is totally reliable. The variance a~ 
approaches zero. Now the best line will go through the third point exactly. 
Choose that line to minimize the sum of squares of the first two errors. 

4 A single flip of a fair coin (0 or 1) has mean m = 1/2 and variance a 2 = 1/4. This 
was Example 1. For the sum of two flips, the mean is m = 1. Compute the variance 
a 2 around this mean, using the outcomes 0, 1,2 with their probabilities. 

5 Instead of adding the flip results, make them two independent experiments. The 
. outcome is (0,0), (1,0), (0,1) or (1,1). What is the covariance matrix !:.? 

6 Change Example 1 so that the coin flip can be unfair. The probability is p for heads 
and 1 - P for tails. Find the mean m and the variance a 2 of this distribution. 

7 For two independent measurements x = bland x = b2 , the best x should be some 
weighted average x = ab i + (1 - a)b2 . When bi and b2 have mean zero and 
variances al and af, the variance of x will be P = a2al + (1 - a )2af. Choose the 
number a that minimizes P: dP / da = O. 

Show that this a gives the x in equation (2) which the text claimed is best, using 
weights WI = l/al and W2 = l/a2' 

8 The least squares estimate correctly weighted by !:. -1 is x = (AT!:. -1 A) -1 AT!:. -1 b. 
Call that x = Lb. If b contains an error vector e , then x contains the error Le. 

The covariance matrix of those output errors Le is their expected value (average 
value) P = E [(Le)(Le)T] = LE [eeT] LT = L!:.LT. Problem: Do the multipli

cation L!:.LT to show that P equals (AT!:.-l A)-I as predicted in equation (10). 

9 Change the grades to 3, 1, -1, -3 for A, B, C, F. Show that the SVD of this grade 
matrix has the same UI, U2, VI, V2 (same eigencourses) as in Example 5, but now A 
has rank 2. 

3 -1 1 -3 

Grade matrix A= 
-1 3 -3 1 
-3 1 -1 3 

1 -3 3 -1 

Notes One way to deal with missing entries in A is to complete the matrix to have 
minimum rank. And statistics makes major use of the pseudoinverse A + (which is 
exactly the left inverse (AT A)-I AT from the normal equation when AT A is invert
ible). 



8.7. Computer Graphics 459 

8.7 Computer Graphics 

Computer graphics deals with images. The images are moved around. Their scale is changed. 
Three dimensions are projected onto two dimensions. All the main operations are done by 
matrices-but the shape of these matrices is surprising. 

The transformations of three-dimensional space are done with 4 by 4 matrices. You 
would expect 3 by 3. The reason for the change is that one of the four key operations 
cannot be done with a 3 by 3 matrix multiplication. Here are the four operations: 

Translation (shift the origin to another point Po = (xo, Yo, zo» 

Rescaling (by c in all directions or by different factors C1, C2, C3) 

Rotation (around an axis through the origin or an axis through Po) 

Projection (onto a plane through the origin or a plane through Po). 

Translation is the easiest-just add (xo, Yo, zo) to every point. But this is not linear! No 3 
by 3 matrix can move the origin. So we change the coordinates of the origin to (0,0,0,1). 
This is why the matrices are 4 by 4. The "homogeneous coordinates" of the point (x, y, z) 
are (x, y, z, 1) and we now show how they work. 

1. Translation Shift the whole three-dimensional space along the vector Vo. The origin 
moves to (xo, Yo, zo). This vector Vo is added to every point v in R3. Using homogeneous 
coordinates, the 4 by 4 matrix T shifts the whole space by Vo: 

10 .. 0 0 
o 1.0.0· 
0·0 J O· 

Yozo 1 

Important: Computer graphics works with row vectors. We have row times matrix instead 
of matrix times column. You can quickly check that [0 0 0 1] T = [xo Yo Zo 1]. 

To move the points (0,0,0) and (x, y, z) by vo, change to homogeneous coordinates 
(0,0,0,1) and (x, y, z, 1). Then multiply by T. A row vector times T gives a row vector. 

\ 

Every v moves to v + Vo: [x y z 1] T = [x + Xo Y + Yo z + Zo 1]. 
The output tells where any v will move. (It goes to v+vo.) Translation is now achieved 

by a matrix, which was impossible in R3. 

2. Scaling To make a picture fit a page, we change its width and height. A Xerox copier 
will rescale a figure by 90%. In linear algebra, we multiply by .9 times the identity matrix. 
That matrix is normally 2 by 2 for a plane and 3 by 3 for a solid. In computer graphics, 
with homogeneous coordinates, the matrix is one size larger: 

Rescale a solid: S = 

cOO 0 
o cOO 
o 0 c 0 
000 1 
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Important: 8 is not c I. We keep the "I" in the lower comer. Then [x, y, 1] times 8 is the 
correct answer in homogeneous coordinates. The origin stays in its normal position because 

[0 ° 1]8 = [0 ° 1]. 
If we change that 1 to c, the result is strange. The point (c x, c y , c z , c) is the same 

as (x, y, Z, 1). The special property of homogeneous coordinates is that multiplying by c I 
does not move the point. The origin in R3 has homogeneous coordinates (0,0,0, 1) and 
(0,0,0, c) for every nonzero c. This is the idea behind the word "homogeneous." 

Scaling can be different in different directions. To fit a full-page picture onto a half
page, scale the y direction by !. To create a margin, scale the x direction by ~. The 
graphics matrix is diagonal but not 2 by 2. It is 3 by 3 to rescale a plane and 4 by 4 to 
rescale a space: 

and 8= 

1 

Scaling matrices S = [~ ~ 1 ] 

Cl 

That last matrix 8 rescales the x, y, z directions by positive numbers Cl, C2, C3. The extra 
column in all these matrices leaves the extra 1 at the end of every vector. 

Summary The scaling matrix 8 is the same size as the translation matrix T. They can 
be multiplied. To translate and then rescale, multiply vTS. To rescale and then translate, 
multiply vST. Are those different? Yes. 

The point (x, y, z) in R 3 has homogeneous coordinates (x, y, z, I) in p3. This "pro
jective space" is not the same as R4. It is still three-dimensional. To achieve such a thing, 
(cx, cy, cz, c) is the same point as (x, y, z, 1). Those points of projective space p3 are 
really lines through the origin in R4. 

Computer graphics uses affine transformations, linear plus shift. An affine transforma
tion T is executed on p3 by a 4 by 4 matrix with a special fourth column: 

au a12 

A= a21 a22 
a31 a32 
a41 a42 

a13 
a23 
a33 
a43 

° ° ° 1 

T(1,O,O) ° 
T(O, 1,0) ° 
T(O, 0,1) ° 
T(O, 0,0) 1 

The usual 3 by 3 matrix tells us three outputs, this tells four. The usual outputs come 
from the inputs (1,0,0) and (0,1,0) and (0,0,1). When the transformation is linear, three 
outputs reveal everything. When the transformation is affine, the matrix also contains the 
output from (0,0,0). Then we know the shift. 

3. Rotation A rotation in R2 or R3 is achieved by an orthogonal matrix Q. The determi
nant is + 1. (With determinant -1 we get an extra reflection through a mirror.) Include the 
extra column when you use homogeneous coordinates! 

Plane rotation Q = [c?S () - sin () ] 
sm () cos () 

becomes 
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This matrix rotates the plane around the origin. How would we rotate around a 
different point (4,5)? The answer brings out the beauty of homogeneous coordinates. 
Translate (4,5) to (0,0), then rotate by (), then translate (0,0) back to (4,5): 

[

10 
v T_R T+ = [x y I] ° 1 

-4 -5 

0] [COS () - sin () 0] [1 ° ° sin () cos () ° ° 1 
1 ° ° I 4 5 

I won't multiply. The point is to apply the matrices one at a time: v translates to vT_, then 
rotates to v T _ R, and translates back to v T _ R T +. Because each point [x y 1] is a row 
vector, T_ acts first. The center of rotation (4, 5)-otherwise known as (4,5, I)-moves 
first to (0,0,1). Rotation doesn't change it. Then T+ moves it back to (4,5,1). All as it 
should be. The point (4,6,1) moves to (0, 1, 1), then turns by () and moves back. 

In three dimensions, every rotation Q turns around an axis. The axis doesn't move-it 
is a line of eigenvectors with A = 1. Suppose the axis is in the z direction. The 1 in Q is 
to leave the z axis alone, the extra 1 in R is to leave the origin alone: 

[
COS () - sin () 0] 

Q = sin () cos () ° 
° ° 1 

and R= 
° Q ° 
° ° ° ° 1 

Now suppose the rotation is around the unit vector a = (al' a2, a3). With this axis a, the 
rotation matrix Q which fits into R has three parts: 

The axis doesn't move because a Q = a. When a = (0,0,1) is in the z direction, this Q 
becomes the previous Q-for rotation around the z axis. 

The linear transformation Q always goes in the upper left block of R. Below it we see 
zeros, because rotation leaves the origin in place. When those are not zeros, the transfor
mation is affine and the origin moves. 

4. Projection In a linear algebra course, most planes go through the origin. In real life, 
most don't. A plane through the origin is a vector space. The other planes are affine spaces, 
sometimes called "fiats." An affine space is what comes from translating a vector space. 

We want to project three-dimensional vectors onto planes. Start with a plane through 
the origin, whose unit normal vector is n. (We will keep n as a column vector.) The vectors 
in the plane satisfy n T v = 0. The usual projection onto the plane is the matrix I - nn T. 

To project a vector, mUltiply by this matrix. The vector n is projected to zero, and the 
in-plane vectors v are projected onto themselves: 
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In homogeneous coordinates the projection matrix becomes 4 by 4 (but the origin doesn't 
move): 

o 
1 ~nnTO 

o 
'QO()l' 

Now project onto a plane n T (v - vo) = ° that does not go through the origin. One point on 
the plane is Vo. This is an affine space (or aflat). It is like the solutions to Av = b when 
the right side is not zero. One particular solution Vo is added to the nullspace-to produce 
a flat. 

The projection onto the flat has three steps. Translate Vo to the origin by T -. Project 
along the n direction, and translate back along the row vector Vo: 

Projection onto a flat 0] [I - nn
T 0] [I 0] . 

1 ° 1 Vo 1 

I can't help noticing that T _ and T + are inverse matrices: translate and translate back. They 
are like the elementary matrices of Chapter 2. 

The exercises will include reflection matrices, also known as mirror matrices. These 
are the fifth type needed in computer graphics. A reflection moves each point twice as far 
as a projection-the reflection goes through the plane and out the other side. So change 
the projection 1 - n n T to I - 2n n T for a mirror matrix. 

The matrix P gave a "paraUel" projection. All points move parallel to n, until they 
reach the plane. The other choice in computer graphics is a "perspective" projection. This 
is more popular because it includes foreshortening. With perspective, an object looks larger 
as it moves closer. Instead of staying parallel to n (and parallel to each other), the lines of 
projection come toward the eye-the center of projection. This is how we perceive depth 
in a two-dimensional photograph. 

The basic problem of computer graphics starts with a scene and a viewing position. Ideally, 
the image on the screen is what the viewer would see. The simplest image assigns just one 
bit to every small picture element-called a pixel. It is light or dark. This gives a black 
and white picture with no shading. You would not approve. In practice, we assign shading 
levels between ° and 28 for three colors like red, green, and blue. That means 8 x 3 = 24 
bits for each pixel. Multiply by the number of pixels, and a lot of memory is needed! 

Physically, a raster frame buffer directs the electron beam. It scans like a television 
set. The quality is controlled by the number of pixels and the number of bits per pixel. 
In this area, one standard text is Computer Graphics: Principles and Practices by Foley, 
Van Dam, Feiner, and Hughes (Addison-Wesley, 1995). The newer books still use ho
mogeneous coordinates to handle translations. My best references were notes by Ronald 
Goldman and by Tony DeRose. 
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• REVIEW OF THE KEY IDEAS • 

1. Computer graphics needs shift operations T (v) = v + Vo as well as linear operations 
T(v) = Av. 

2. A shift in Rn can be executed by a matrix of order n + 1, using homogeneous coor
dinates. 

3. The extra component 1 in [x y z 1] is preserved when all matrices have the numbers 
0,0,0, 1 as last column. 

Problem Set 8.7 

1 A typical point in R 3 is xi + y j + z k . The coordinate vectors i, j, and k are 
(1,0,0), (0, 1,0), (0,0, 1). The coordinates of the point are (x,y,z). 

This point in computer graphics is xi + y j + zk + origin. Its homogeneous coor
dinates are ( , , , ). Other coordinates for the same point are ( , , , ). 

2 A linear transformation T is determined when we know T(i), T(j), T(k). For an 
affine transformation we also need T ( ). The input point (x, y, z, 1) is trans-
formed to xT(i) + yT(j) + zT(k) + __ 

3 Multiply the 4 by 4 matrix T for translation along (1, 4, 3) and the matrix TI for 
translation along (0,2,5). The product TTl is translation along __ 

4 Write down the 4 by 4 matrix S that scales by a constant c. Multiply ST and also 
TS, where T is translation by (1,4,3). To blow up the picture around the center 
point (1,4,3), would you use vST or vTS? 

5 What scaling matrix S (in homogeneous coordinates, so 3 by 3) would produce a 
1 by 1 square page from a standard 8.5 by 11 page? 

6 What 4 by 4 matrix would move a comer of a cube to the origin and then multiply 
all lengths by 2? The COlJler of the cube is originally at (1, 1,2). 

7 When the three matrices in equation 1 multiply the unit vector a, show that they give 
(cos e)a and (1- cos e)a and O. Addition gives aQ = a and the rotation axis is not 
moved. 

8 If b is perpendicular to a, mUltiply by the three matrices in 1 to get (cos 8)b and 0 
and a vector perpendicular to b. So Q b makes an angle e with b. This is rotation. 

9 What is the 3 by 3 projection matrix I - n n T onto the plane ~ x + ~ y + ~ z = O? In 
homogeneous coordinates add 0,0,0,1 as an extra row and column in P. 

10 With the same 4 by 4 matrix P, multiply T_PT+ to find the projection matrix onto 
the plane ~ x + ~ y + ~ z = 1. The translation T _ moves a point on that plane (choose 
one) to (0,0,0,1). The inverse matrix T+ moves it back. 
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11 Project (3,3,3) onto those planes. Use P in Problem 9 and T_PT+ in Problem 10. 

12 If you project a square onto a plane, what shape do you get? 

13 If you project a cube onto a plane, what is the outline of the projection? Make the 
projection plane perpendicular to a diagonal of the cube. 

14 The 3 by 3 mirror matrix that reflects through the plane n T v = ° is M = I - 2n n T. 

Find the reflection of the point (3,3,3) in the plane ~x + ~ y + tz = 0. 

15 Find the reflection of (3,3,3) in the plane ~x + ~y + tz = 1. Take three steps 
T _ M T + using 4 by 4 matrices: translate by T _ so the plane goes through the origin, 
reflect the translated point (3, 3, 3, l)T_ in that plane, then translate back by T+. 

16 The vector between the origin (0,0,0, 1) and the point (x, y, z, 1) is the difference 
v = . In homogeneous coordinates, vectors end in . So we add a 
__ to a point, not a point to a point. 

17 If you multiply only the last coordinate of each point to get (x, y, z, c), you rescale 
the whole space by the number . This is because the point (x, y, z, c) is the 
same as ( , , ,1). 




